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ABSTRACT AND INTRODUCTION 

Scientific notation is a scheme for presenting numbers over a wide 
range of values that avoids the consumption of page space and the 
other inconveniences of long and unprofitable strings of leading or 
trailing zeros. A related convention provides for the convenient entry 
of numbers over a wide range into calculators or their introduction as 
constants into computer programs. A closely-related concept, floating 
point representation, provides for the compact representation of 
numerical values over a wide range inside computers or in data 
recording structures. In this article we will examine these concepts 
and then give details (some very tricky) of various standardized 
conventions for their use. The metrics range and precision are 
discussed. Background is given on pertinent basic number theory 
concepts. 

SCIENTIFIC NOTATION 

The situation 

Especially if we wish to retain the basic SI units (that is, to not use 
multipliers such as milli and mega), we often have to write numbers 
that have a substantial number of leading or trailing zeros. 

For example, the mass of an electron is about: 

0.00000000000000000000000000000091093822 kg 

The Earth’s mass is approximately: 

5973600000000000000000000 kg 

These are not only tedious to write or keyboard, they also take up 
space on the page, and the reader, to grasp them, must do a lot of 
digit counting (perhaps using a pencil as a handy pointer, with the 
result that a treasured textbook gets defaced). 

There is of course a convention for facilitating digit counting: 

0.000 000 000 000 000 000 000 000 000 000 910 938 22 kg 

5 973 600 000 000 000 000 000 000 kg 
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or (in the US in particular) 

5,973,600,000,000,000,000,000,000 kg 

but it doesn’t help much. 

Significant digits 

In this example: 

1.0230 kg 

it is clear that we intend to assert a precision of 5 significant digits 
(else the trailing “0” would not be there; the value would be the same 
without it). 

But in this case: 

12,500 m 

it cannot be made clear whether we are asserting a precision of 3, 4, 
or 5 significant digits. 

Principle 

In scientific notation, in its generalized form, we express a number in 
this form: 

s × 10e 

where s (the significand1) is any real number and e (the exponent) is 
any integer, positive, negative or zero. 

Thus the following would be legitimate examples of the use of 
scientific notation: 

1.235 × 10-7 

0.027 × 106 

7 × 103 

We might even run into this: 

0.0007 × 106, or 

100,000 × 10-3 

We might wonder what is the purpose of the latter two, since they 
seem to be burdened with “unprofitable” zeros. But this can make 
sense if we wish to compare two numbers: 

                                      

1 This is also called the mantissa. This is deprecated today out of concern over 
confusion with the use of “mantissa” to mean the fractional part of a logarithm, a 
related but different thing (as is discussed later in this article). 
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2000 × 1015 

0.001 × 1015 

making it fairly obvious by inspection that the first is 2 million times 
bigger than the second. 

Another benefit of scientific notation is that it can also allow us to 
make an explicit assertion about the number of significant digits of a 
value. For example, if we take this value that we saw earlier: 

12,500 m 

and write it as: 

1.250 × 104 

then we make it clear that we intend 4, not 3 or 5, significant digits—
1-2-5-0. 

Normalized scientific notation 

In many cases we adopt the convention of making the significand, s, 
always in the range: 

1 ≤ s < 10 

That is, it can have a value from 1.00000... through 9.99999... .The 
exponent, e, will then have to be chosen, in the face of that, so that s 
and e together represent the intended quantity. 

This is often called normalized scientific notation. 

Examples of values conforming to this convention are: 

6.23 × 1023 

1.0001 × 10-40 

Zero 

In basic (non-normalized) scientific notation we can represent zero 
(although we might ask what is the point).  We can write: 

0 × 100, or, if for some weird reason we prefer to, 

0 × 10-108 

They are both 0. 

In normalized scientific notation we cannot express 0: in that mode, 
the significand cannot be 0, as would be required to do that directly. 

But this is rarely of any concern. We use scientific notation to “write” 
or “print” numbers. We do not have to use it for all numbers. We do 
not use it for page numbers, nor when we say “251 machines of this 
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type are already in service”. So when we mean zero, we can write “0” 
(or “zero”, depending on the editorial context). 

Engineering notation 

A variation of scientific notation, often called engineering notation, 
caters to the widespread use in engineering of units that are basic 
units affected by the standard SI multipliers, whose numerical values 
are always 103n, where n is a positive or negative integer (not zero). 

In engineering notation we always: 

• make the significand in the range 1 ≤ s < 1000 

• make the exponent an integer multiple of 3 

Examples would be: 

12.5 × 106  V (“ah, yes, 12.5 megavolts”) 

850 × 10-9  s  (“ah, yes, 850 nanoseconds”) 

E notation 

Closely related to scientific notation, and in fact derived from it, is 
what is perhaps best called “E notation”. It is often used to state 
numerical constant in computer programs, and is also often used as a 
“poor man’s scientific notation” in informal papers, or when 
corresponding by e-mail when scientific notation cannot be properly 
presented owing to typographical limitations. 

The principle can perhaps best be shown through examples. A value 
will first be stated in normalized scientific notation and then in 
(normalized) E notation. 

1.5609 × 1016  1.5609E16 or, preferably, 1.5609E+16 

8.75 × 10–11 8.75E–11 

In some contexts it is acceptable to use a non-normalized form. In 
some contexts this scheme is adapted to parallel engineering notation. 

The symbol “E” is said to be evocative of “exponential”. The notation 
is sometimes called “exponential notation”, although that term 
technically applies equally well to scientific notation as well as related 
forms using a base other than 10 (as we will encounter in our later 
work on binary floating point representation). 
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FLOATING POINT REPRESENTATION 

Principle 

Floating point representation adapts the concept of scientific notation, 
in a binary implementation context, to the representation of numbers 
in computer memory, or in stored data. 

Basically, again we represent a number in the form: 

s × 10e 

where s and e are binary numbers, s being a binary integer, fraction, 
or mixed number and e being a binary integer. 

The binary point 

The base of a number system is also called its radix. It is 10 for 
decimal numbers, 16 for hexadecimal numbers, and 2 for binary 
numbers. 

In the decimal number system, we are familiar with the use of the 
decimal point (shown in US practice as a period). This allows us to 
have “places” in the number whose value is less than one. The digit 
just to the left of the decimal point is the units digits, worth “1 each”. 
The place just to the right is worth “1/10 each”; the place to the right 
of that “1/100” each; and so forth. As we go to the right, the value of 
each is the fraction 1/10 of the prior place value. That fraction is by 
definition 1/r, where r is the radix, 10 in this case. 

Though less familiar to us, the same concept is valid for any number 
system. In the general case, this marker is called the radix point. In 
binary numbers, this is specifically called the binary point. 

We see here a binary number with a binary point: 

1111.11 

As in the decimal case (and for any radix), the place just to the left of 
the binary point (the “units place”) is worth “1 each”. The place to the 
right of the point is worth (in decimal) “1/2 each” (that is, 1/r, or r-1, 
where r=2 for the binary system). The place to the right of that is 
worth 1/2 that, or “1/4 each” (r-2). And so forth. 

Thus the entire number is worth In decimal): 

8+4+2+1+1/2+1/4, or 15-3/4 (15.75). 

In general, in a computer or a data file, we don’t put markers in mixed 
binary numbers (that is, those that have both an integer and a 
fractional part) to indicate the presence and location of a “binary 
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point”. Thus, if in a certain situation in a computer the plan is to 
represent a number like this: 

1011.0011 [its decimal value is 11-3/16 or 11.1875] 

it is actually represented in memory just as: 

10110011 

The program or whatever “knows” that the binary point is between 
the 4th and 5th bits. It is always in that spot in the “field” for this 
particular data type. As a result, this class of scheme is often 
described as a fixed point representation. 

The normal interpretation of a number (decimal or binary), if no radix 
point can be “seen”, assumes the radix point to be just to the right of 
the rightmost (units) digit. 

If the bit pattern above were interpreted (incorrectly) on that premise, 
it would seem to represent the decimal value 179. I sometimes call 
that the manifest value of a bit pattern. 

We will work with binary mixed numbers here, aided by our 
supernatural ability to see the binary point. 

The name 

The name floating point was coined in distinction with fixed point 
(which was coined at the same time to be in distinction with floating 
point). “Fixed point” evokes a number lying in state in a box, with the 
radix point at a certain place. The spot had best be large enough to 
accommodate all the significant digits of the number over the range 
we wish to represent. 

“Floating point” evokes the notion of the significand lying in state in a 
more cozy box (just big enough for all its significant digits), while the 
binary point could be anyplace, even well off the left or right edge of 
the “page”, as required by the actual size of the number being 
represented.  

Examples 

Here we have some examples of binary floating point numbers. I will 
show the significand, s, in binary, but the rest in decimal. After some 
of the examples I will then show its value in binary “fixed point” form, 
and then in all cases its decimal equivalent. 

1.1101 × 25 111010 58 

0.1001 × 212 10010000 144 

11.0101 × 2-6 0.0000110101 0.05175... 

101 × 235  1.717... × 1011 
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Normalized significand 

Paralleling the situation with the scientific notation, often (for 
consistency in data handling) we will use normalized floating point 
notation, in which the significand is forced to lie in a certain range and 
the exponent has to be chosen in light of that. 

Two schemes are common. 

Normalized fractional significand 

Here the significand, s,  must lie in this range (expressed in decimal): 

0.5 ≤ s < 1 

That is, its value in binary must be in the range: 

0.10000... through 0.11111... 

A  typical value might be: 

0.101001101 × 26 

Normalized mixed significand 

Now, we will make a slightly different arrangement. 

Here the significand, s, must lie in this range (expressed in decimal): 

1 ≤ s < 2 

That is, its value in binary must be in the range: 

1.00000... through 1.11111... 

A typical number (the same value as in the example above) might be: 

1.01001101 × 25
 

Note that here the units digit (just to the left of the binary point) is 
always “1”. Thus we do not need to store it in the representation of 
the number—when that is “decoded” the program just adds 1 to the 
significand as read. 

The advantage of doing this is that with, for example 8 bits of storage, 
we can store a significand with 9 bits of precision. 

What about zero? 

In the “normalized mixed significand” scheme, we cannot represent 
zero, a deficiency not so easily ignored as in the case of writing values 
in a textbook. The reason of course is that we cannot ever make the 
significand 0. 
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Thus actual floating point representation schemes of this type have 
special provisions for representing 0. We will see this when we look, 
shortly, at the details of an actual standard scheme. 

RANGE AND PRECISION 

We often wish to characterize number representation schemes in 
terms of two attributes, range and precision. We will work with those 
when I discuss some specific floating point representation systems. 
For now, let’s review the concepts we will use so they will be familiar 
to us when we get to that work. 

Range 

The term range as applied to a number representation system can 
have several meanings, not always carefully distinguished. 

The range of a number representation system (without further 
qualification) identifies the maximum and minimum values it can 
represent (making use of the algebraic sign if the system 
accommodates one). 

For example, consider a decimal system comprising five digits with the 
decimal place (perhaps implicitly) at the far right and an algebraic sign, 
thus: 

± ddddd. 

Its range is: 

–99999 through +99999 

As a numerical value, the range is the difference between those two 
values. (We now have already seen two meanings of the term.) 

For the system above, the numerical value of its range is 199998. 

The absolute value range of a system is the same but only embracing 
its positive values (and zero, if it accommodates same). We assume 
that the system, if it does allow negative values, has a symmetrical 
range. 

For the system example above, its absolute value range is: 

0 through 99999 

and the numerical value of its absolute value range is 99999. 

Often, we are concerned with the non-zero range of a system. That is 
the range from the smallest positive non-zero value that can be 
represented to the largest positive value that can be represented.  
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For the system above that is: 

1 through 99999 

The relative non-zero range is the ratio of the larger of those to the 
smaller, in this case 99999. 

Precision 

By the precision of a numbering system we mean the “fineness” of its 
ability to distinctly represent different values. As with “range”, the 
term comes in several flavors, often not carefully distinguished. 

Basically, the precision of a number representation system is the size 
of the “step” in value between consecutive possible representations. 

For example, in a decimal system of five digits (all of them 
“significant”), the precision is always 1 unit. Note that this is not 
“±1 unit”, as if we were stating an accuracy or a range of error. 

In fact, in a system with “symmetrical rounding”, the range of error 
due to “quantization” (the forcing of values to an allowable 
representation) is ± 1/2 the precision. 

Often we are interested in the relative precision, which is the ratio of 
the precision to the actual value (and thus requires us to assume some 
value). 

For example, in a decimal system with all digits significant, and thus a 
precision of 1, the relative precision at a value of 1500 is 1/1500. 

Of course here, a smaller number is “finer precision”. We may want a 
metric that increases for “finer precision”. For that we can use the 
reciprocal of the relative precision, which has no consistent name. I 
will call this metric here the precision score. For example, for a 
decimal system with all digits significant, and thus whose precision is 
1, at a value of 1500 the precision score is 1500. 

Note that the precision score increases for increasing value. For a five 
digit system, at its maximum value, 99999, the precision score is 
99999. Note that this is almost exactly 105, where 5 is the number of 
decimal digits. 

If we increase the number of digits to 6, the precision score at 
maximum becomes 999999, almost exactly 106. 

Thus, it is convenient to refer to the precision of a system in terms of 
equivalent decimal digits (5 for the first system, 6 for the second). We 
recognize that (by definition) this metric is almost exactly the 
logarithm (base 10) of the precision score. 
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Now, following this line of thought, for a decimal system at a value of 
1500, the relative precision can be said to be about 3.2 decimal digits. 

In the binary realm, the same notions apply. To cut to the punch line, 
we can describe the relative precision of a binary number 
representation system, at some particular value, in terms of equivalent 
bits, where that metric is the logarithm (base 2) of the “precision 
score” at that value, and is stated in “bits”. Not surprisingly, for a 
regular 7-bit binary number, at its maximum value, that metric is 
almost exactly 7 bits. 

THE SIGNIFICAND IN ACTION 

It may seem curious that in both formulations of a floating-point 
scheme, the fractional significand system, we only use about half the 
possible range (the upper half) of the significand.  This seems 
“wasteful”, but there is a very good reason for it, which will shortly 
become apparent. 

For now, lets watch the action. We will do this with the fractional 
significand formulation, but the concept applies to either. 

For compactness of the example, imagine an 8-bit significand field, 
whose manifest value (that is, as if the binary point is at the far right) 
can run from 0 to 255. But we have agreed to only use the values 
from 128 to 255. 

In fact we consider a binary point to exist at the left of the leftmost 
place. Thus the actual value would run from 0/256 to 255/2562; we 
will only use the range of values from 128/256 to 255/256. 

Lets start with the significand at 255/256 (.11111111 in binary), and 
the exponent at +2. We can write that value (all in decimal) as: 

255/256 × 22 [3.9843750] 

Now we will count down by increments of 1 in the significand: 

254/256 × 22 [3.9687500] 

253/256 × 22 [3.9531250] 

252/256 × 22 [3.9375000] 

This isn’t too interesting, so we’ll jump ahead a few steps: 

                                      

2  Many people seem to expect that divisor to be 255, based on the fact that 
(irrelevant here) the maximum value of an 8-bit number is 255. But each time we 
shift the binary point to the left one place (or shift the number to the right, if you 
prefer), the value drops to 1/2. Eight of those shifts means it drops to 1/256. 



Scientific Notation and Floating Point Representation Page 11 

 
130/256 × 22 [2.0312500] 

129/256 × 22 [2.0156250] 

128/256 × 22 [2.0000000] 

Do we next go to: 

127/256 × 22 [1.9843750] 

No, and I’ll talk about why shortly. 

Instead, we “downshift and rev up” (to use an auto metaphor); we 
move the exponent down one notch to 1, and push the significand up 
to its maximum: 

255/256 × 21 [1.9921875]  [not quite the same; stay tuned] 

We then continue as expected: 

254/256 × 21 [1.9843750] 

253/256 × 21 [1.9765625] 

Lets use a new analogy with an electrical test voltmeter, not a car 
drive train. Assume that its ranges were each a factor of 2 from the 
previous one (not usual, I know—this is just a metaphor). 

We are testing what turns out to be successively decreasing voltages. 
Following good lab practice, as soon as the needle gets down to “half 
scale”, we switch the meter range to one 1/2 the size. 

Why? Because the relative precision of the meter decreases as the 
meter goes down. Thus we want to keep the needle in as high a part 
of the scale as possible. With successive scales having a ratio of 2:1, 
as soon as we get to half scale we can switch to the next lower scale, 
which would now put the needle at the top, and so we should do that. 

So it is with our floating point representation. The precision of the 
representation is the step size, n , where n is the number 
represented. Recall that we can consider the relative precision of the 
representation as: 

n/n 

where n is the current number and n is the change in the number 
between adjacent steps.3 

                                      

3  To be really rigorous, n should be the average value of n for the two steps 
between which the difference is n; I didn’t do it that way in my calculations for 
simplicity. 
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But our precision score, which we want to be higher for “better 
precision”, is the inverse of that, or: 

n/n 

But since n in this case is always 1, that becomes just n. (Well, 
that’s handy!) 

Now let’s restate our countdown, this time showing the precision 
score, n/n, after each step: 

255/256 × 22 [3.9843750] [starting step] 

254/256 × 22 [3.9687500] n/n=254 [I said it was handy] 

253/256 × 22 [3.9531250]  n/n=253 

252/256 × 22 [3.9375000]  n/n=252 
• 
• 
• 

130/256 × 22 [2.0312500]  n/n=130 

129/256 × 22 [2.0156250]  n/n=129 

128/256 × 22 [2.0000000]  n/n=129 

<shift range> 

255/256 × 21 [1.9921875]  n/n=255 

254/256 × 21 [1.9843750]  n/n=254 

253/256 × 21 [1.9765625]  n/n=253 

Note that at the beginning, as we move down, the relative precision 
decreases (just as for our declining meter needle). 

We “shift range” (that is, change to the next lower exponent value) as 
soon as we can (just at “half scale”). Just before that, the precision 
has declined from its original value of 254 (we missed 255 because of 
where we started) to 128. 

But after the “range shift” (with the “meter needle at the top of the 
scale again”), the precision is back up to 255. 

Had we allowed the significand to drop below 128/255 (and not 
“shifted range”), we would have suffered a further decline in 
precision. But we got our mojo back as soon as we could. 

So that’s why we only use the top half of the meter scale in our meter 
metaphor—and only the top half of the possible range of the 
significand in our floating point system. 

The story is similar for the mixed number significand scheme. 
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An inconsistency? 

Note that in the first part of this scenario, we discussed two 
possibilities for the step below this one: 

127/256 × 22 [1.9843750] 

They were: 

127/256 × 22 [1.9843750], and 

255/256 × 21 [1.9921875] 

Note that these don’t have the same value (they differ by about 
0.5%). 

This is because, as we saw from the part of the exercise on precision, 
the step size stays constant for a whole “cycle” (for a given value of 
the exponent), but drops (we might say, “suddenly”) to half its size 
for the next lower cycle (with an exponent of one less). 

Thus, which “cycle” a representation is in affects its precise value. 
This is the nature of a system with a “step size jump”. 

Logarithmic schemes, an alternative to floating point schemes, have a 
step size that decreases linearly with value; there are no “cycles”. In 
these, by the way, the precision score is constant throughout the 
entire range. 

THE IEEE-754 FLOATING POINT REPRESENTATION SYSTEMS 

Several highly-specified binary floating point systems, intended for use 
in computers or data storage systems, are defined by IEEE standard 
IEEE 754-1985. 

These principally differ in terms of the total number of bits used to 
store the presentation, and thus in the precision and range of the 
representation. 

The “baseline” scheme uses 32 bits to store the number. We will use 
it to illustrate the principles shared by all the schemes. 

The 32-bit scheme 

The IEEE-754 32-bit scheme uses the “normalized mixed significand” 
approach. Here the significand, s, must lie in this range (expressed in 
decimal): 

1 ≤ s < 2 

That is, its value in binary must be in the range 1.0 through 1.11111... 

The significand is conceptually 24 bits in length, but because the first 
bit (the units digit) is always 1, we need not store it, and thus use 
only a 23-bit field to carry the "fractional part" of the significand. 
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A separate sign bit is used. There is no notion of "twos-complement" 
or anything like that. O means positive, 1 means negative, and the 
magnitude is given by the fraction field just as it seems. 

In this scheme, the range of the exponent is -126 through +127. 
Rather than using a sign bit, we use an 8-bit field (range 0-255), 
which carries a value of 127 greater than the exponent (an "exponent 
offset", or “exponent bias”, of +127). 

Thus an exponent field value of 0 means an exponent of -127; a field 
value of 127 means an exponent of 0; and a field value of 255 means 
an exponent of +128. Looks likes we have wasted some values: 0, 
meaning an exponent of -127, and 255, meaning an exponent +128.  
Those exponent values are not used. Why? Well, we have a couple of 
"funny things" to do, and these values are reserved as ingredients in 
doing them. 

The total number of bits per value is 32: one sign bit for the 
significand, 23 bits for the significand fraction, and 8 bits for the 
exponent. 

Representing zero4 

We have to do something special to represent the value 0, since the 
significand cannot become 0 as would be needed to represent 0 in the 
usual way. 

For the value 0, we code all 0s in the significand fraction field (which 
would ordinarily mean a significand proper of 1.0000) and 0 in the 
exponent field (which would ordinarily mean an exponent of -127). 
This whole thing is recognized as meaning a value of 0. (The 
significand sign bit still works, so we can have +0 and -0 if that does 
anything for us.) 

What would that set of field encodings ordinarily mean? It would 
mean: 

1.0000000000... × 2-127. 

This is outside the legitimate exponent range of the scheme, so this 
encoding would never be used with that meaning. It can thus be 
unambiguously recognized as the secret code for 0. 

Another complication 

The wrinkle 

There is another important wrinkle. 

                                      

4 Sounds like a perfect title for a Monty Python skit—think “Summarizing Proust”. 
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The four smallest non-zero positive numbers than can be represented 
are: 

+1.00000011 x 2-126  

+1.00000010 x 2-126  

+1.00000001 x 2-126 

+1.00000000 x 2-126  

The next lower value that can be represented is: 

+ 0  (via a special code) 

So the values just above zero are each separated by: 

0.00000001 x 2-126 

but the lowest of them is separated from the next lower value (zero) 
by: 

1.00000001 x 2-126  

an increment 257 times as large. So it is as if there is a really big 
"dead zone" near zero. 

This can cause a problem in calculations. If we subtract two quite 
distinct small non-zero values, for example: 

(+1.01000010 x 2-126) – (+1.00000010 x 2-126) 

we get +0.01000000 x 2-126 (to write it in an easily compared form). 

But there is no representation for that: –126 is the smallest possible 
exponent, so we would need to use the significand shown, but we 
can’t: we cannot have a significand that does not have “1” in the 
units place. So that result would have to be “rounded down” to zero 
(and be represented by the special code for that).”Discarded” would 
be a more candid description of its destiny. 

Then, even though the subtraction produces a non-zero answer, that 
is lost. This can result in divide-by-zero faults when there should not 
be such (any small non-zero value would avoid that), and so forth. 

The solution 

This dilemma would not exist if, once we got into this region, the 
significand could lose its “enforced 1” in the units place. The 
significand could then just keep dropping to whatever was needed—in 
the subtraction example above, to 0.01000000 (while the exponent 
stayed at -126). 

But the units “1” is not stored, so we can’t just leave it off. 
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Rather, some special coding is needed that would say to the 
“interpreter”, “do not add 1 to the decoded significand fraction to get 
the significand—use the fraction as the significand”. 

For these values, the exponent field carries  all 0s (0) (which would 
ordinarily mean an exponent of -127), while the significand fraction 
field carries the actual significand. It is of course never 0, so this 
situation can be distinguished from the special coding for 0 (where the 
significand fraction field carries 0). 

Recognizing this tells the “interpreter”: 

• Do not add 1 to the decoded significand fraction to get the 
significand—use the fraction, as it appears, as the significand. 

• Consider the exponent to be -126. 

The resulting specially-represented values have been called in the past 
denormal values, or sometimes denormalized values.) Neither term is 
really apt, and in the 2008 version of IEEE-754, they are called 
“subnormal values”. 

Infinity 

There are a few code combinations not yet used, and rather than 
wasting them, they have been assigned to some other useful special 
things. 

It can sometimes be useful to be able to represent infinity (with a 
choice of algebraic sign) in place of an actual numeric value. 

For either sign of infinity we put all 1s (255) in the exponent field (a 
value never used otherwise) and all 0s (“0”) in the significand fraction 
field. The significand sign bit still works so we can have both positive 
and negative infinity. 

Not a Number 

Finally, we wish to represent the pseudo-value "not a number" (NaN), 
used to record a failed or meaningless result of a calculation, or as a 
filler in synchronous data transmission to mean "no data here yet". 

For that we put all 0s (255) in the exponent field and anything except 
all 0s (0) in the significand fraction field. The significand sign bit is 
allowed to have either value, but that rarely has any significance. 
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Summary of the properties 

Range 

The largest magnitude numbers (excluding infinity) that can be 
represented in this scheme are about ±3.4 × 1038. 

The smallest magnitude non-zero numbers (not using the subnormal 
range) that can be represented are about ±1.18×10-38. 

The smallest magnitude numbers (using the subnormal range) that can 
be represented are about ±1.4×10-45. The corresponding relative 
range is about 2.43×1083. 

Precision 

The precision score at the top of each “cycle” is about 16.8 million. 
At the bottom of each cycle, it is about 8.39 million. 

The 16-bit version 

In the 16-bit version ("half-precision"), the significand fraction field is 
10 bits in size (so the significand itself has 11 bits), and there is a sign 
bit for the significand. The exponent field has five bits. The range of 
actual exponent values is -14 through +15 (the exponent offset 
is -15). The zero, subnormal, and infinity values work just as in the 
32-bit form. 

The largest (absolute) representable values are ±65504. 

“MANTISSA” VS. “SIGNIFICAND” 

Relationship to logarithms 

The common (or base 10) logarithm of a number is the power to 
which 10 must be raised to equal the number. 

Thus the common logarithm of 4500 is (to 4 decimal, places): 

3.6532 

The portion “.6532” is called the mantissa5 of the logarithm, and the 
portion “3” is called its characteristic. 

                                      

5 The term was introduced by Briggs, who introduced the concept of the common 
(base 10) logarithm. The word, in Latin, means “something added on”; in Briggs’ 
view the mantissa was added on to the major part of the logarithm, the 
characteristic. In fact the full connotation of the word mantissa was “something 
added on that adds no real value; a makeweight.” Briggs should have better stuck to 
his mathematics, and left the adaption of Latin words to those qualified to do such. 
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That same number, 4500, could be represented in scientific notation 
as: 

4.500×103 

Here, the quantity 4.500 is the significand of the scientific notation. 

But we could legitimately write that, with only a small error, as: 

100.6532×103 

This still follows the structural principle of scientific notation (of 
course not in the way we usually use it). 

In this form, the quantity 100.6532 is the significand of the scientific 
notation. Calling that the mantissa essentially says it is equivalent to 
the quantity 0.6532, which is the mantissa of the equivalent 
logarithmic form. But these are of course quite different quantities. 

Thus the shift away from the use of “mantissa” to identify this 
component of scientific notation and the adoption instead of 
“significand”. 

But where does that term come from? 

About “significand” 

The term significand for a certain part of both scientific notation and 
floating point representation is called that because it describes the 
significant digits of the number being represented. 

Here is an example in a decimal context. These numbers: 

1546 

1.546 

0.1546 

0.000000001546 

all have the same significant digits: 1-5-4-6. (15460000 would as 
well, if we declared it to have four significant digits.) 

Thus, in scientific notation (of the most common normalized  
significand type), for all those numbers the significand would be: 

1.546  

IEEE DECIMAL FLOATING POINT REPRESENTATIONS 

The floating point representations of IEEE-754-1985 fully reflect their 
binary nature. Among other things, this means that many numbers 
often encountered in such fields as accounting (such as 149.99) do 



Scientific Notation and Floating Point Representation Page 19 

 
not have a precise binary representation in a finite number of digits. 
That number in binary is (the underlined part repeating infinitely): 

10010101.1111110101110000101000… 

Thus, such “ordinary” rational numbers nevertheless may often suffer 
from rounding error when represented in binary form (including in 
floating point schemes). Of course, the amount of error is often 
miniscule, but its accumulation can result in “failure to close” in 
accounting work. 

The later version of the standard, IEEE-754-2008, includes three 
“decimal-friendly” floating point representations. Although they still 
assume a binary representation in the computer or data record, they 
are organized so as to be “decimal” in their outlook. In particular, they 
allow numbers such as 149.99 to be represented without rounding 
error, and in fact essentially all unavoidable rounding honors decimal 
rounding precepts. 

The details of these three schemes, with two flavors of each, are 
complicated, and are beyond the scope of this article. 
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