
The SMPTE 27.97 fps drop-frame
video time code system

Douglas A. Kerr

Issue 4
December 28, 2018

ABSTRACT

SMPTE time codes are used to identify specific “points” in a video recording
or film to a precision of the time of one frame, the smallest unit by which
film or video recordings can be edited, trimmed, and so forth. The time
codes may be embedded in the video tape or film or in the digital
representation of the “production” in an editor. Musical notation programs
intended for use in scoring for video productions often use these time codes
as a way of precisely coordinating the music with the video itself. The
structure of the time codes there is dependent on the frame rate of the
production.

A common frame rate for video recordings, following from the North
American analog TV broadcast format in use since the advent of color
television broadcasting, and still one of the options in the current digital
television broadcast system, is nominally 29.97 fps (frames/second). With a
non-integral number of frames per second, a straightforward time
designation system (working in terms of integral hours, minutes, seconds,
and frames) is not feasible. Rather, for this frame rate, a rather clever but
tricky scheme is used. This article describes that scheme.

An appendix explains where this peculiar frame rate came from. A second
appendix shows the details of the cyclic time discrepancy of the system. A
third appendix describes an algorithm that can be used to convert time to
hours:minutes:seconds;frames notation under this time code system. Other
appendixes cover related matters, including the handling of time code
matters in the musical notation program Overture 5.

The article only discusses this time code system from an abstract
standpoint; there is no discussion of how the time code might be physically
embedded in a film or video medium.

1 INTRODUCTION

Time codes are used in video production to precisely identify specific
“points” in a video recording or film, generally to a precision of the time of
one frame, the smallest unit by which video recordings can be edited,
trimmed, and so forth. These codes are commonly used in the planning and
execution of various video editing operations.

The time codes are typically presented for human interpretation in the format
hours:minutes:seconds:frames, as for example 00:58:30:15.1

Music notation programs used in the composition and arranging of music for
use in video or film productions often allow the video time code that would
correspond to various spots in the score to be shown on the score and/or
displayed in a clock-like window. This allows the proper coordination of the
music with the video/film itself.

Various time codes of this general structure (accommodating different
video/film contexts, notably different frame rates) have been standardized by
the Society of Motion Picture and Television Engineers (SMPTE), and are
often spoken of as “SMPTE time codes”.

2 BEFORE VIDEO

Prior to the emergence of television broadcasting as a “parallel medium” to
motion pictures, identification of points in a film production (during editing
and such) was generally done on a feet:frames basis.2 The emergence of
television broadcasting, and especially the emergence of video recording, led
to an interest in using a more time oriented basis, typically expressed in the
form hours:minutes:seconds:frames. Then, of course, we need to become
concerned not with the number of frames per foot of film but rather with the
number of frames per second of wall time3.

3 VIDEO FRAME RATES

3.1 U.S monochrome television transmission

The U.S. standard monochrome television system, standardized in 1941,
utilized a nominal frame rate of 30 frames/second4. Some of the reasons for
this are discussed in Appendix A.

Video time codes, as we know them today, didn’t really exist in that era.
There was no capability for recording video in the way we know of today, so
there was really no need.

1 We will see later that for the specific time code being discussed here, the preferred format
would be 00:58:30;15.

2 In 35 mm film production, for “counting” purposes it was assumed that 16 frames equaled
one foot, even though in physical terms the actual relationship was a tiny bit different (the
discrepancy being about 0.3%).

3 My term for “real time”; the term of course comes from the notion of a wall clock.

4 It is most common in industry practice to state this as “30 fps” (frames per second), but in
this article I will follow accepted engineering and scientific practice and state the unit as
“frames/second” or (abbreviated) “fr/s”.

But if there had been time codes, the arrangements would have been very
straightforward. If we think of a continuously-running “clock” carrying “time
code time”, the frames field would advance by one for every frame recorded.
After the count got to 29, for the next frame the frames field would go to
00, and the seconds field would be incremented by one. And of course the
minutes and then hours fields would advance just as we would expect.

3.2 U.S color television transmission

The U.S. color television system was standardized in 1953. For complicated
reasons that are discussed in Appendix A, the frame rate was changed to
(theoretically) 30•(1000/1001) frames per second (29.97002997). The time
code system we will discuss here is predicated on a frame rate of 29.97
frames per second, which differs by only one part per million from that
theoretical rate, and is convenient for the working of that time code system
(as we will see shortly).

4 TIME CODE IMPLICATIONS AND THEIR SOLUTION

4.1 The complication

But now there is a complication in a time code system based on this new
television frame rate.

We could of course use the same scheme as used with a 30 frames/sec
frame rate–only the actual rate at which the frames field advances would be
different (29.97 fr/s rather than 30 fr/s). But now, after a TV program lasting
exactly 1 hour of “wall time”, the time code “clock” would read
00:59:56:12, a discrepancy of 3.6 seconds. In production, this would be
intolerable in terms of the coordination of program control and switching (not
to mention in terms of revenue when advertising is selling for many thousand
dollars per second).

Fancifully, this discrepancy could be avoided by having the frames field
count up to only 29.97 frames before it cycled to zero and the seconds field
was incremented. But of course the frames field must work in integer values
(matching the advance of the actual frames of the video), so no such thing
would be possible.

4.2 The solution

Instead, a clever scheme, somewhat reminiscent of how the leap year
scheme of civil dates works, was devised. Here are its rules. Again, think in
terms of a continuously-running “clock” carrying time code time.

• The frames field advances at the rate of 29.97 counts per second of
“wall time” time (33.3666 ms per count).

• The range of the frames field is (normally) 00-29 frames. When the
frames field reaches 29, at the next frame time the frames field goes to
00 and the seconds field is incremented by 1, except that:

• If the seconds field is now 00 (that is, we are now in the first second of a
minute in time code time), the range of the frames field is 02-29 (that is,
the frame numbers 00 and 01 are skipped at the beginning of that
second), except that:

• If the seconds field is now 00, but the minutes field now is evenly
divisible by 10 (that includes a value of 00), then the range of the frames
field is the normal 00-29 (that is, no frame numbers are skipped at the
beginning of that second).

The carries from the seconds field to the minutes field, and from the minutes
field to the hours field, are conventional.

It is important to keep in mind that the seconds for which the first two frame
values are skipped are the first seconds of minutes of time code time (not of
wall time). This is an important distinction, since the two are slightly
discrepant at this point.

The overall result of this pattern is that after 10 minutes of wall time the
time code would be precisely 00:10:00:00–there is no discrepancy between
the two at that point, nor at any other multiple of 10 minutes. And so after
60 minutes of wall time the time code would be precisely 01:00:00:00. 5

But within any ten-minute period, there is a cyclic discrepancy between the
time code and wall time in both directions. The greatest discrepancy in either
direction is a little less than 2 frame times (about 0.07 sec).

This scheme is said to be a “drop-frame” time code scheme, an unfortunate
term as it is of course not frames that are “dropped” but rather frame
numbers.

5 Presentation

In a conventional time code scheme (not involving the “drop frame”
complication), it is typical to present a time code value in this form:

00:58:30:15

5 Note that if the actual frame rate were the specified nominal one (29.9700266), there
would be a discrepancy at the end of 10 minutes of about 0.266 ms.

But for a drop-frame time code scheme (such as the one discussed here), it
is the custom to use this format:

00:58:30;15

the semicolon before the frames field being a reminder that the frames field
works in a “special” way.

Often in such contexts as the display of the time code in a digital panel, this
convention is not observed, colons used for all separation of fields regardless
of the time code system in use.

6 DESIGNATION

It is common to, as a shorthand, designate the time code system described
here as “29.97 fps DF”, the DF of course signifying “drop frame”, a reminder
of its special scheme of operation. For time code systems that do not use
the drop-frame scheme, the suffix “ND” (“non drop [frame]”) is often
applied, especially when there is also a drop-frame form of the time code at
the same frame rate so the two forms need to be unambiguously
distinguished.

7 IN MUSIC NOTATION PROGRAMS

7.1 Functionality

In a music notation program being used to create or modify music intended
for use in video productions, it is often possible to have the program place
the time code values on the score itself, perhaps as of the beginning of every
measure. We may also arrange for the time code time at any point in the
score (perhaps at the nominal onset instant of a certain note we have
selected) displayed on a visual “time code clock”, as we see below with the
notation program Overture 5 6 .

Time code clock in Overture 5

If the score is not being “played”, this is not happening in real time but in
“conceptual time”, reckoned for the score position of interest based on the
tempo(s) prescribed for the music.

6 Although I use Overture 5 for this example of a time code display, I must advise that in
Overture 5 (as of version 5.5.1-6) there are numerous serious anomalies in its handling of
time codes. Some of these are discussed in Appendix E.

7.2 A wrinkle in the calculation

In this situation there are of course no actual “frames” coming along. Rather,
to show the time code applicable to any point in the score, we must first
convert the musical position of that point to wall time. For example, if the
meter of the score is 4/4 and the established tempo is a consistent 90
beats/minute, then the time of each measure would be 2.666 seconds.

Then, for the point of interest, we convert the corresponding wall time to
measures, on the basis of 29.97 frames/second. The time code works in
integral frames, so we must reduce this result to an integer. There are two
ways to do this that would likely be considered:

• We truncate the result to an integer (that is, round the result down to an
integer).

• We round the result to the nearest integer.

Clearly the choice is not of great import; the difference between the two
approaches would be, in about half the cases, one frame, never greater. But
let’s still look at which would be more appropriate.

Conceptually, if we consider “playing” the film or video recording, one frame
is in place for its allotted time and then the next frame is in place.7

Suppose we start “play” at the beginning of the film or video recording. We
consider the wall time there to be “0”, and we can consider the frame that is
initially in place to be “frame 0”, with time code 00:00:00;00. Only after one
full frame time is the next frame (“frame 1”) in place.

Thus it is appropriate for our reckoning of the time code to advance from
00:00:00;00 to 00:00:00;01 only after one full frame time. That is
consistent with, when converting wall time to frames, rounding down the
result of the calculation.

Thus, I endorse, while converting a position on a score in a music notation
program into time code, when converting the reckoned wall time of the point
of interest into frames, rounding down.

By the way, the use of rounding down has no significant effect on the range
of time discrepancies encountered.

7 In fact, with the “interlaced” display of video, that is not fully true, but I will still adopt
that conceit for my presentation. It is essentially fully true for film viewing.

8 WHY NOT DROP ONE FRAME NUMBER EVERY HALF MINUTE?

In this system, the maximum discrepancy between the time code value and
wall time is less than 2 frame times. Still, one might ask why we don’t drop
one frame number every half minute (instead of two every minute). This
would cut the maximum discrepancy to about half of what it is now.

The reason is that in editing video, for a reason related to the modulation
scheme of the NTSC color television system (see section A.2.5 in Appendix
A), it is desirable in editing to, whenever possible, work with “clips” that
contain an even number of frames, starting with an even-numbered frame.

Under a non drop-frame time code system, this is easily done by always
working with clip boundaries that are between an odd and an even frame
number. (The first frame of the whole thing is considered to be an “even”
frame since it is “frame 0”.)

Under the drop-frame system described here, this approach is still valid. Even
and odd frames will still always have even and odd frame frame numbers in
the time code, since when numbers are skipped it is always two at a time.

But that would no longer be true if the plan were to skip one frame number
every half minute. So a complicated calculation would have to be made for
each clip to determine where a desirable clip boundary was.

So the system doesn’t do it that way.

9 THE APPENDIXES

Appendix A describes how the “peculiar” frame rate of U.S. color television
transmission came about.

Appendix B illustrates shows, with detailed numerical information, the
variations of the discrepancy between time code time and wall time.

Appendix C presents (in pseudocode) a routine for converting wall time into
SMPTE 29.97 drop-frame time code values.

Appendix D discusses the 23.976 fps and 30 fps DF time code systems.

Appendix E Discusses the time code features of the notation program
Overture (including some flaws in their implementation.

10 ACKNOWLEDGEMENT

Thank to Carla Kerr for her skilled proofreading of this tedious manuscript in
an earlier version. Errors in this version are wholly my responsibility.

11 ISSUE RECORD

Issue 5 (this issue), December 28, 2018. Various editorial improvements.
Corrections and extensive changes to Appendix B. New issue of algorithm in
Appendix C.

Issue 4 (this issue), July 9, 2018. Correct discussion of rounding process.
Correct minor typographical and editorial errors.

Issue 3, June 30, 2017. Make various corrections in Table 1 in Appendix B
and in the discussion of it there. Add appendixes D and E. Correct minor
typographical and editorial errors.

Issue 2, June 30, 2017. Correct minor typographical and editorial errors.

Issue 1, June 27, 2017. Initial issue.

-#-

Appendix A
Origin of the “29.97” frames/second rate

A.1 U.S. monochrome television transmission format

As the prospect of television broadcasting (monochrome at this point in time)
emerged in the late 1930s, various schemes of modulation and image
formatting were used on an experimental basis. Ultimately, one scheme was
adopted as the premise for U.S. television broadcasting, and its particulars
were refined and standardized by the National Television System Committee
(NTSC), a standards body established by the Federal Communications
Commission for television broadcasting in the U.S. The resulting standard
was adopted by the FCC in early 1941 as the norm for all U.S. television
broadcasting.8

In this scheme, the image was turned into what would later come to be
described as a “video signal” by scanning the image in a raster pattern.
Successive instances of the entire image were scanned 30 times per second,
said to be the frame rate. The frame consisted of 525 horizontal scan lines.

Actually, each frame was conveyed by two successive fields, each of which
carried either the odd-numbered or even-numbered lines of the frame raster;
thus the field rate was 60 fields per second. This arrangement was in the
interest of minimizing the visual impression of flicker in the displayed image.

Transmission was over a radio-frequency carrier in the VHF band. The video
signal, representing the a non-linear transform of the luminance of the point
in the image9, was carried by vestigial sideband amplitude modulation of this
carrier. For each channel, the main carrier was accompanied by an audio
carrier 4.5 MHz higher in frequency. The audio aspect of the program was
carried by frequency modulation of that second carrier.

The choice of 60 fr/s was made to mitigate the impact of a common source
of interference in the received signal. Nonlinearities in electrical appliances or
lighting fixtures (especially the then-emerging fluorescent fixtures), or in
defective joints in power transmission line (or even household wiring)
conductors, would generate harmonics of the power line frequency
potentially extending into the radio-frequency band used for television
transmission. These harmonics appeared to be amplitude modulated at a
frequency of nominally 120 Hz (twice the power line frequency–the

8 Although this format was standardized by the NTSC (in its first incarnation), it is never
spoken of as the “NTSC television format standard”, that term by custom being reserved for
the color television format standardized by a reincarnation of that same body a number of
years later.

9 But still often called luminance.

emissions would normally be at a maximum for both positive and negative
excursions of the instantaneous voltage).

Thus there would be in the demodulated video signal a spurious component
recurring at a rate of nominally 120 Hz. As this rate corresponds nominally
to twice the field rate of the television signal (which itself is two times the
frame rate), this would typically produce two shaded bars across the image
in the television receiver, nearly stationary vertically.

If the frame rate of the TV signal was not nominally equal to the power line
frequency, these bars would move vertically across the picture at a
substantial rate, and would thus be much more annoying visually than the
nearly-stationary bars that resulted from the use of the 60 fr/s frame rate.

A.1.1 In Europe

In Europe, where the most common power-line frequency was 50 Hz, the
(monochrome) television system that was most widely adopted used a
nominal frame rate of 50 frames/second, based on the very same reasoning.

A.2 U.S. color television transmission format

A.2.1 Introduction

During the late 1940’s there was earnest interest in the prospect of “color”
television broadcasting. As with television broadcasting itself, various
systems were devised, tested, and promoted by various manufacturers.
Eventually a system developed by RCA was adopted as the premise for the
introduction of color television broadcasting in the U.S.

The FCC reincarnated the NTSC, under whose auspices the particulars of the
color TV broadcast system were refined and standardized. The resulting
system was adopted by the FCC in 1953. This system came to be known as
the “NTSC” system (notwithstanding the fact that the earlier standard
monochrome system was also perfected under the auspices of the NTSC in
an earlier incarnation).

A.2.2 Forward- and backward compatibility

An important property of the NTSC system was forward- and
backward-compatibility between the monochrome and color systems,
meaning:

• Existing monochrome receivers tuned to a color broadcast would properly
display the picture (on a monochrome basis, of course).

• Color receivers tuned to a monochrome broadcast would properly display
the picture (on a monochrome basis, of course), without needing to make
any significant mode change.

A.2.3 The modulation scheme

In the NTSC system, the payload of the vestigial-sideband amplitude
modulation of the main carrier is the luma signal10, plus a subcarrier (at a
frequency of about 3.58 Mhz) which, by suppressed-carrier phase-amplitude
modulation,11 conveys the quasi-chrominance12,13 of the points in the image.
This new component came to be called the chroma signal (in part to
recognize that its payload is not actually chrominance).

A.2.4 Minimization of undesirable artifacts

The chrominance subcarrier (yes, it was most often called that even though
its payload is not truly chrominance14) and its sidebands share part of the
same frequency region occupied by the luma signal itself. Thus, the luma and
chroma signals are imperfectly separated. The result is that there are visual
artifacts from the chrominance subcarrier (especially in the case of a
monochrome receiver receiving a color transmission). In effect, the receiver
misinterprets the chroma signal as part of the luma signal.

It was recognized that the visual impact of these artifacts could be
minimized if certain relationships obtained between the horizontal scan rate,
the chrominance subcarrier frequency, and the separation between the main
carrier and the audio carrier. For various reasons, the precise intercarrier
separation was considered sacrosanct.

That being the case, attaining the desirable relationships required a slight
change in the horizontal scan rate and thus (since the number of scan lines
per frame was also considered sacrosanct) a slight change in the frame rate.

The final design has a frame rate that theoretically was 1000/1001 times the
original frame rate of 30 fr/s. That theoretical value is 29.97002997 fr/s. For
various practical reasons, the actual specified frame rate was made
29.97002667 fr/s, with a tolerance of ±0.000088 fr/s. (The theoretical
value is well within that tolerance.)

10 Something like the non-linear transform of luminance used in the monochrome system,
but not exactly, and here called “luma” to make clear that it was not luminance.

11 This is also commonly described as quadrature amplitude modulation; the two terms
describe the same situation from two different perspectives.

12 Chrominance refers to the “component” of a color (in the formal sense of that term) that
is responsible for its being “colored” (in the popular meaning of the term).

13 This is not true chrominance but is a non-linear property related to chrominance in a
complicated way.

14 In later years it came to be called the “chroma signal” to make clear that it did not convey
chrominance.

In order to play the “drop-frame” time code game and have wall time and
time code time come exactly together over a cycle of reasonable length, the
time code scheme was predicated on a frame rate of exactly 29.97 fr/s. The
disparity between this and the theoretical or specified rates is less than one
part per million.

A.2.5 Editing considerations

One important feature of the plan regarding the chrominance subcarrier
frequency and the frame rate is that the base phase of the subcarrier is
opposite in successive frames. This minimized the visual impact of artifacts
resulting from the fact that the receiver misinterprets the chroma signal as
part of the luma signal.

Because of this situation, when editing NTSC video recordings, it is desirable
to always make “cuts” of sets of frames that start with an “even” frame and
contain an even number of frames. This maintains continuity of the
chrominance subcarrier base phase across the “cut”. This had an influence
on the design of the SMPTE 29.97 fr/s drop-frame time code system, as
discussed in section 8 of the body of this article.

A.2.6 In Europe

As a standard for color television transmission emerged in Europe, one camp
supported a concept quite like the NTSC system used in the U.S., but were
aware of performance limitations of that system. (Workers in the field used
to jokingly say that NTSC stood for “Never Twice the Same Color.) Thus the
system that eventually became the most widely used in Europe, PAL (“Phase
Alternation Line”), included some important design differences
(“improvements”) from the NTSC system. The final scheme did not demand
any tampering with the frame rate, which remained at (nominally) 50 fr/s.

Thus the time code for use with PAL-oriented video is straightforward, no
“drop-frame” scheme being needed.

-#-

Appendix B
Time discrepancy in the 29.97 fr/s drop-frame time code system

Under the 29.97 fr/s drop-frame time code system, the frames come along
at a rate of 29.97 per second, but the time code clock only scores a new
second after 30 frames have passed. Thus the time code drops behind “wall
time” by 0.03 frame time each second. But we give the time code a two-
frame “bump” at nine out of the ten “new minute” instants in each
ten-minute period, which exactly overcomes this discrepancy.

If we want to be more specific, and ask, for example, “how much is the
greatest discrepancy”, we must first address several issues, including:

• Will we look into the discrepancy at each integer frame instant, or at each
integral second of wall time, or what?

• Just exactly what two things will we compare to score the
“discrepancy”?

• Will we reckon the discrepancy in seconds or frames?

In this presentation I chose as follows, based on the “frame-oriented” nature
of this whole matter:

• I will reckon the discrepancy at certain selected integral frame counts.

• I will reckon the discrepancy in frames (or frame times, if you will).

As to the discrepancy, I will compare the following:

• The total frames implied by “time code” that would be shown at that
instant.

• The wall time at that point (on a frame basis).

And thus the discrepancy will be denominated in frames.

Table 1 shows the pattern of time discrepancy under this rubric. The entries
are all instants at “interesting” integral numbers of frames from the starting
instant. For each we see the wall time and the corresponding time code.

Instant
(frames)

Wall time1
(hh:mm:ss:ff.ff)

Time code
(hh:mm:ss;ff)

Discrep-
ancy

(frames) Note

0 00:00:00:00.00 00:00:00;00 0.00 Starting instant

1 00:00:00:01.00 00:00:00;01 0.00

2 00:00:00:02.00 00:00:00;02 0.00

3 00:00:00:03.00 00:00:00;03 0.00

Time code and wall
time are fully
consistent

27 00:00:00:27.00 00:00:00;27 0.00 Still consistent

28 00:00:00:28.00 00:00:00;28 0.00 Still consistent

29 00:00:00:29.00 00:00:00;29 0.00 Still consistent

30 00:00:01:00.03 00:00:01;00 –0.03 Time code falls behind

59 00:00:01:29.03 00:00:01;29 –0.03

60 00:00:02:00.06 00:00:02;00 –0.06 Time code falls behind

899 00:00:29:29.87 00:00:29;29 –0.87

900 00:00:30:00.90 00:00:30;00 –0.90 Time code falls behind

1799 00:01:00:00.80 00:00:59;29
–1.77

Time code fell behind
in 1st minute

1800 00:01:00:01.80 00:01:00;02
+0.20

Frame numbers 00,
01 skipped2

3597 00:02:00:00.60 00:01:59;29 –1.57
Time code fell behind
in 2nd minute

3598 00:02:00:01.60 00:02:00;02
+0.40

Frame numbers 00,
01 skipped

5395 00:03:00:00.40 00:02:59;29
–1.37

Time code fell behind
in 3rd minute

5396 00:03:00:01.40 00:03:00;02
+0.60

Frame numbers 00,
01 skipped

Start of minutes 4-8 not shown
Frame numbers 00,
01 skipped five times
at minutes 4-8

16183 00:08:59:29.17 00:08:59;29 –0.17 Time code close here

16184 00:09:00:00.20 00:09:00;02
+1.80

Frame numbers 00,
01 skipped

17981 00:09:59:28.97 00:09:59;29
+0.03

Time code almost
exact here

17982 00:10:00:00.00 00:10:00;00
0.00

No frame numbers
skipped

Notes

1. In which the seconds counter advances by one every 29.97 frames
counter and the frames field reads to 0.01 frame.

2. This is triggered by the actual, not theoretical, time code reaching
what would be 00:01:00;00 before the “skipping”.

Table 1. Time discrepancy in the 29.97 fr/s drop-frame time code system

The column headed “Wall time” shows the time at the instant of interest in
terms of hours, minutes, seconds, frames, and hundredths of a frame. Note
that in this mixed-base form, with the number of frames per second being
non-integral, as time progresses, just when the frames component would
reach 29.97, it instead goes to 00.00 and the seconds field is incremented.

We start by looking at the operation at early frame counts (within the first
second). We note that for each additional frame that passes, the time code
advances by one frame (as does the wall time). Thus there is no discrepancy
between the two times in this season.

Next, we go to the end of the first second. As the frame count reaches 27,
28, and 29 the time code and wall time are still together. At a frame count
of 30, the time code advances its seconds field, now showing 00:00:01;00.
But at that instant, the wall time is 00:00:01:00.03. Thus the time code is
0.03 frames behind wall time.

We next move forward by about one minute. The frame count when the time
code “would show” exactly 1 minute (except for the skipping of frame
counts that will occur then) is 1800 frames. We will first look at things one
frame earlier, at a frame count of 1799.

We see that there the time code has fallen behind the wall time by 1.77
frames.15

It’s a little tricky to confirm “at sight” the discrepancy by subtracting the
time code from the wall time. In this case, to subtract the “29” value of
the time code frames field from the “00.80” value of the frames field of
the wall time, we have to borrow from the seconds field of the wall
time, and one second is worth 29.97 frames. Thus the wall time, after
“borrowing” one second, is 00:00:59:30.77. We subtract the time code,
00:01:59:29, from that, and get 1.77 frames (but since the time code is
the smaller, that is actually a discrepancy of -1.77 frames). This same
maneuver will be needed at some other places.

At 1800 frames, when the time code “turns over” to the next second (and
would, except for frame number skipping, then show exactly one minute),
the time code jumps ahead by 2 frames (since frame numbers 00 and 01 are
skipped), and thus the wall time code is now 0.20 frames ahead of the
theoretical time code. (There is no shift of the discrepancy by 0.03 frames at
this time—that is only seen at a new frame time when the seconds field of
the wall time advances, which it does not here.)

The frame count when the time code clock “would show” exactly 2 minutes
(except for the skipping of frame counts that will occur there) is 3598
frames 16. We will first look at things one frame earlier, at a frame count of
3597 frames. We note that the discrepancy here is only –1.60 frames, 0.2
frames less (in magnitude) than we had approaching the “1-minute mark”.
That is because at the 1-minute mark, the two frame number skip was a
little more than needed to overcome the amount the time code had fallen
behind during the first minute.

In any case, we then look at the situation at 3598 frames. The action here is
parallel to what we saw at the “1 minute” point. (Again there is no shift of
the discrepancy by 0.03 frames here since the seconds field of the wall time
has not advanced.)

We see the further progression of this pattern at the “3-minute” point (5396
frames). (Again there is no shift of the discrepancy by 0.03 frames here
since the seconds field of the wall time has not advanced.)

This process proceeds this way over the successive one-minute intervals. At
the end of each, the amount the time code is behind is less and less,
because at the start of each new time code minute the time code advance

15 We will see that this is the greatest negative discrepancy (that is, when the time code is
farthest behind the wall time for an integral frame time).

16 The “should be 2 minutes” time code point does not come at 3600 frames but 2 frames
earlier since two frame counts were “jumped” at the “1 minute” point.

due to skipping the two frame numbers is greater than the amount the time
code has inherently fallen behind during the preceding minute.

Now that we have seen the way the situation progresses, we will jump
ahead to the “9-minute” point, which occurs at frame 16184. One frame
before that (frame 16183) we see that the discrepancy has become only
-0.17 frame times, and one frame later, the 0.03 frame progression in
discrepancy (which occurs whenever the wall time seconds field advances
upon a new frame) plus the two-frame skip at frame 16184 puts the
discrepancy to +1.80 frame times.17

At the 17981 frame point (one frame before when the time code clock
would show exactly 10 minutes, and it in fact will), the time code has drifted
back so it is 0.03 frames ahead of the wall time. At 17982 frames (the
“10-minute point”), the time code has encountered its usual 0.03 frame loss
because the wall time seconds count advances here; no frame counts are
skipped (as this is the beginning of a minute evenly divisible by 10); and the
two time scales come into exact conformity.

This whole scenario plays out over every ten-minute cycle (that is of course
both exactly 10 minutes of wall time and exactly 10 minutes of time code
time).

For integer frame counts, the greatest negative discrepancy between the
time code and the wall time is –1.77 frame times, which occurs at the end
of the first minute of each 10-minute cycle. The greatest positive
discrepancy is +1.80 frame times, which occurs at the “9-minute mark” in
each 10-minute cycle.

If we examine the time discrepancy at other times, including various integer
seconds of wall time (I will spare the reader that presentation), we find that
the magnitude of the maximum discrepancy can be slightly larger than 1.80
frame times but still not ever over 2 frame times.

-#-

17 This is the greatest positive discrepancy (that is, when the time code is ahead of the wall
time for an integral frame time).

Appendix C
Algorithm for converting “wall time” to

29.97 fps drop frame time code

C.1 Introduction

This appendix presents, in the author’s form of pseudocode, an algorithm for
converting an instant described in terms of “wall time” (time in seconds from
some reference point)) into the corresponding time code under the SMPTE
29.97 fr/s drop-frame time code scheme.

C.2 Caveat (in the expected fine print, of course)

Although the author has used his best skill to formulate this algorithm, he does not
guarantee its accuracy nor suitability for any purpose. Readers who may wish to use this
algorithm as, for example, the basis for program code in an application should first confirm
that it is suitable. Any adoption of this algorithm is done at the person’s sole discretion and
risk, and the author cannot be responsible for any results deemed unsatisfactory.

C.3 The algorithm

Routine for converting a "wall time" (in seconds) into SMPTE time code form under the
29.97 fps drop frame system

Issue 05, 2018.12.27

Author: Douglas A. Kerr

Language: DAK pseudocode

Issue record

Issue 05 (this issue), 2018.12.27. Editorial changes, change and correction in variable
name, no actual code changes.

// Define constants

frameRate = 29.97

sizeBigCycle = 17982 // Size in frames of the "ten minute" cycle of life of the time code
system

 // This cycle corresponds precisely to a wall time of 00:10:00.00 and a time code of
00:10:00;00

 // No frame counts are skipped at the beginning of a big cycle.

sizeWeeCycle = 1798 // Number of frames between points where frame counts might be
skipped. The skip occurs at the beginning of the wee cycle.

 // This interval is approximately one minute of wall time and there are ten of them in a
big cycle

 // However, the first wee cycle in a big cycle actually has a duration of sizeWeeCycle
+2 since no frame numbers are skipped at the beginning of minute 0 (the start of
timekeeping) because the minute number there is evenly divisible by 10.

// Declare variables

wallTime //Input: wall time in seconds at the instant of interest

timeCodeHMSF //Output: time code in H:M:S;F form at the instant of interest

frames1 // Number of frame times to the instant of interest

numBigCycles //Number of full big cycles

tailFrames // Number of frame times in the "tail" (that is, after all full big cycles have
been removed)

numWeeCycles // Number of partial or full wee cycles in tail

numSkips1 // Number of times in the tail that frame counts are skipped

numSkips2 // Number of times in all the full cycles that frame counts are skipped

numSkips3 // Total number of times that frame counts are skipped

framesSkipped // Total number of frame counts skipped

adjustedFrames // Total number of frames to the instant of interest as will be
reported in the time code

// Declare function

HMSF(numFrames) // Converts argument numFrames (in frames) to H:M:S;F form (30 frame
counts = 1 seconds count).

 // This function not defined here. Algorithms for it are well known.

// START

frames1 = integer(wallTime * frameRate) // Convert wall time to frames, truncate result
to integer. (See section 7.2in the body of the article.)

numBigCycles = integer(frames/sizeBigCycle) // Determine number of full big cycles in
frame count.

tailFrames = frames - (numBigCycles * sizeBigCycle) // Number of frames in tail (beyond
all full big cycles); might be zero.

if (tailFrames < (sizeWeeCycle + 2)) // First wee cycle is 2 frames larger than all later
ones

 numWeeCycles = 1 // If tailFrames = 0 this will work out properly

else

 numWeeCycles = integer ((tailFrames - 2) / sizeWeeCycle) +1 // Number of wee
cycles (full or partial) if over 1.

 // Note that when a full wee cycle has just been counted as completed, we are at the
first frame position of the next wee cycle (after any skipping that occurs at the
beginning of that wee cycle)..

 // The -2 accounts for the fact that the first wee cycle has length sizeWeeCycle +2.

numSkips1 = numWeeCycles -1 // Number of times in tail that frame counts are skipped

 // The -1 takes into account that no frame counts are skipped at the beginning of the
first wee cycle, which falls at a time code minute whose number is an integral multiple
of ten. Also, if tailFrames=0, numWeeClycles will be calculated as 1, where as
actually there are no wee cycles in the tail. And numSkips1 will be properly calculated
as 0.

numSkips2 = numBigCycles * 9 // Number of times in all the full big blocks where frame
counts are skipped

numShips3 = numSkips1 + numSkips2 // Total number of times where frame counts are
skipped.

framesSkipped = numSkips3 * 2 // Total number of frames skipped

adjustedFrames = frames1 + framesSkipped // Calculate "adjusted frames" by applying
all frame skips; a frame skip is a “jumping ahead” of the time code time.

timeCodeHMSF = HMSF(adjustedFrames) // Convert adjusted frames to H:M:S;F form.

 // This is the result.

// END

-#-

Appendix D
The 23.976 fr/s and 30 fr/s DF time codes

D.1 Introduction

Two other “odd” time code systems exist as creatures of the same context
that spawned the 29.97 fr/s DF time code. I will discuss them in this
appendix.

D.2 Caveat

I do not work in the video or film industries, and information on the time
codes discussed in this appendix is hard to come by. What I describe here
has been extracted by much reading between the lines. Readers who know
better are encouraged to being their knowledge to my attention.

D.3 The 23.976 fr/s time code system

D.3.1 Introduction

During the era of the “monochrome” TV broadcast standard in North
America, existing motion picture were a popular source of television
programming. But a clever scheme had to be employed to harmonize the 24
fr/s frame rate of the motion pictures with the (then) 30 fr/s frame rate of
television broadcasting.

D.3.2 The field stricture of the television signal

Before we look into the actual working of the 23.976 fr/s time code system,
we must review a previously-unmentioned detail of the NTSC color television
broadcast system.

We have spoken of the transmission of 30 frames/second, but the actual
process is a little more complicated. The actual system transmitted 60
images, called fields, per second. First, a field would be transmitted that
carried every other line of the scanned whole image (say, the “off-numbered”
lines. Then a field would be transmitted that carried the “even-numbered”
lines of the scanned whole image. The object was to minimize the visual
sensation of flicker by doubling the rate at which new “images” were
presented on the screen. Because the two sets of lines were “interlaced” on
the screen, this scheme became known as “interlaced transmission”.

D.3.3 Reconciliation of the frame rates

Now to the actual matter of delivering a film with a frame rate of 24 fr/s
over the television system. Conceptually, one frame of the film is “scanned
into” 2 consecutive fields. The next frame of the film is scanned into 3
consecutive fields. In the “2-field” case, these might or might not be the field
of a single television frame. Half the time they would be, and half the time
not. In any case, on the average, each film frame is transmitted in the time
of 2.5 television fields, or 1.25 television frames, perfectly reconciling the

24 fr/s rate of the film to the 30 fr/s television rate. Looking at it another
way, each four frames of the film are presented by five television frames.
But in the “classical” way of doing it (as described above), two of those five
video frames contain scan lines from two different film frames (in their two
fields). But the whole thing is very satisfying to the human eye.

This scheme is often called the “3:2 pulldown” system,18 the term pulldown
being borrowed from film technique in which, in a camera or projector, film
was periodically “pulled down” from frame to frame (at the film frame
rate).19

D.3.4 The impact of the new television frame rate

A fly came into this ointment with the development of the NTSC color
television system, with its frame rate of (nominally) 29.97 fr/sec. Existing
films were transmitted with the same scheme described just above, but were
run at an average frame rate of 23.976 fr/s. This of course meant that the
action was 0.1% slow (hardly noticeable), and the sound ended up with all
its components 0.1% lower in frequency than originally intended (again
hardly noticeable20).

Another small housekeeping problem is that a film with a run time of exactly
90 minutes would take 90 minutes plus 0.54 seconds to deliver in the
television signal.

 But, in order to avert this small discrepancy in films newly shot with the
intent that they be presented on television, those films were sometimes shot
at a frame rate of 29.976 fr/s. When transmitted on a “3:2 pulldown” basis
on a television system with a frame rate of 29.97 fr/s, the average advance
of the film was 19.976 fr/s, the exact rate at which it was shot. Thus there
would be no slowing down of the action, and no pitch shift to the sound.

D.3.5 A time code for this

When such a film is being edited, the time code used is called the 23.976
fr/s time code. It works on the basis of 24 frame counts per “seconds
count”, although of course each “seconds count” is worth 1.001 seconds of
real time.

18 Given that it is customary to speak of the first frame being scanned into 2 fields and the
second frame into 3 fields, we might think that the notation would be “2:3 pulldown”.

19 But the term “pulldown” is also used to refer to playing a video recording (or film) at a
“slightly” slower speed than that at which it was recorded, in order to accommodate various
forms of transfer; the frame rate is “pulled down”!

20 This is a pitch shift of about 1.7 cents; the cent is a unit of musical pitch difference such
that a pitch difference of 100 cents corresponds to a pitch difference of one semitone.

The result is that the time code time runs slower than “real time” by 0.1%.

Now, couldn’t that discrepancy have been averted by the adoption of a
“drop frame” scheme at this frame rate? Sure. One that has been used (but
was never “standardized”) is actually predicated on a frame rate of exactly
23.98 fps rather than 23.976 fps21. It is sometimes called “23.98 fps True
Time”.22

The frames count is 24 per second (the frames element running from 0-23),
except that as we approach each 50 second multiple of time code “time”
(e.g., 00:00:50:00, 00:01:40:00, 00:02:30:00, etc.), after the frames count
reaches 22 (e.g., 00:00:49:22), frame count 23 is skipped, and at the next
frame the time code is the exact minute (00:00:50:00).23

Thus, overall, the time code time remains consistent with “real time”, the
two coming precisely together every 50 seconds. The maximum discrepancy
is 1 frame (the time code being behind “real time”).

A very similar scheme could be used with an actual frame rate of 23.976 fps
(but has never been standardized). It works exactly as described just above,
except that in addition to the rules as stated there, as we approach each
250 second multiple of time code “time”, after the frame count reaches 21,
frame counts 22 and 23 are skipped, and at the next frame the time code is
the even second.

Again, ongoing, the time code time remains consistent with “real time”, the
two coming precisely together every 250 seconds. The maximum
discrepancy is 1 frame (the time code being behind “real time”).

Still, in most cases, the straightforward 23.976 fps time code system.
“running slow by 0.1%”, is used.

D.3.6 Digital television

Of course, television broadcast under the NTSC system itself is all but
obsolete in North America, being superseded by the digital television
broadcast system. There is a complicated set of standards embracing a
variety of formats, administered by the Advanced Television Systems
Committee (ATSC). Many of these formats provide for imaging at a higher
definition than that of the NTSC system (often referred to as “HDTV”—high

21 In fact, often the 23.976 fps frame rate is spoken of as “23.98 fps”, and in many cases
the nominal operating frame rate is actually 23.98 fps.

22 My information on this has been deduced in a very indirect way, and cannot be
considered authoritative.

23 This happens every 1199 frames.

definition television). These formats include a range of different frame rates
and frame structures. One frame rate that is included (for reasons of
continuity) is 29.97 fr/sec. This is like life imitating art.

So we still have need for the 29.97 fr/s drop-frame time code system, now
usually for video recordings rather than actual film.

D.4 The 30 fr/s drop frame time code system

In some cases, a video production intended for television broadcast will be
created at a frame rate of 30 fr/s. If it is broadcast in a 29.97 fr/s context, it
will have to be “run slow” by 0.1%.24

In the early stages in its life, it will be edited on a 30 fr/s basis. But later in
its life, it may be edited on a 29.97 fr/s basis. And in the latter phase, the
29.97 fr/s drop frame time code system will probably be used.

So, in some situations, so that there would be a frame-by-frame
correspondence in time codes between the two editing contexts, in the
30 fr/s context, the same drop-frame scheme is used as is used in the 29.97
fr/s drop frame time code system. That is, every time the time code enters a
new minute (except for minutes whose number is a multiple of 10), frame
counts 00 and 01 are skipped). This makes the time code clock, overall, run
“0.1% fast” compared to real time.

It is the existence of this odd creature that is responsible for the ordinary 30
fps time code system sometimes being spoken of as “30 fps NDF (“non
drop-frame”).

-#-

24 And today there are sophisticated sound processing systems that can make a “pitch shift”
to overcome the pitch shift that would otherwise result from this situation.

Appendix E
Time code features of the notation program Overture

E.1 Introduction

Overture is a very sophisticated full-featured music notation program,
published by Sonic Scores. Inc., and developed on an ongoing basis by Don
Williams of Sonic Scores.

E.2 Features for film and television music scoring

The program offers several features of special interest to those writing or
arranging music intended to be used in film or video productions. Among
these are features relating to SMPTE time codes. Those features include:

• Showing where the cursor is in the score on a “little clock” in time code
form (reckoning this is of course predicated on the tempo established for
the score).

• Indicating on the score, perhaps at the beginning of every system,
perhaps at the beginning of every measure, the time code there (again
predicated on the tempo established for the score).

These features can operate with the user’s choice of one of several time
code systems:

• 23.976 fr/s

• 24 fr/s [For work with film or film-compatible video in a non-television
context]

• 25 fr/s [For work in the context of the European television system]

• 29.97 fr/s drop frame [For work in the context of the North American
broadcast television system].

• 30 fr/s non-drop frame (Common for video in a non-broadcast-television
context_.

E.3 Errors in execution

But, according to tests and analyses made here25, there have been a number
of serious errors in Overture’s execution of the features. Among those are:

• For the non-integer frame rate systems (the 23.976 fr/s and 29.97 fr/s
DF systems), the rate of advance of the frames “counter” is not that of
the time code system, but rather is 24 fr/s and 30 fr/s, respectively.

25 For example, on Overture test version 5.5.1-6.

• For the 29.97 fr/s drop frame system, the frame number dropping is not
done correctly. Two frame numbers are skipped at the one-minute point,
but none thereafter.

There were other, more subtle anomalies, which I will not discuss here.

E.4 Improvements

As of this writing (in Overture 5.5.4-3), two of these major anomalies have
been corrected. The frame advance rate for the 29.97 fr/s drop-frame
system is now correct, and the drop-frame scheme operates correctly. But
other related anomalies have now appeared.

E.5 Interaction with the developer

This office has repeatedly called these apparent errors to Don Williams’s
attention (in considerable detail, with illustrative examples). The only
acknowledgement received was the revocation of the author’s membership
in the forum where problems with Overture 5 are discussed..

-#-

