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ABSTRACT 

In cartography (mapmaking) and photography, the term projection 
refers to the process of mapping an array of points in 
three-dimensional space to locations on a flat (or flattenable) 
two-dimensional surface. A projection is a particular algorithm for 
doing so. Any photographic process involves projection. Still, we don’t 
often speak of projection in connection with “ordinary” photography, 
but we do often hear of the concept in connection with panoramic 
photography (photography with a large field of view). Because of the 
differing interests in cartography and photography, certain statements 
about the properties of a particular projection, applicable to one of 
these contexts, may not apply to the other. This is often a cause of 
bewilderment to those hoping to understand the technical matters 
involved. 

In this article we introduce the concept of projection, clarify the 
differing outlooks of the cartographic and photographic contexts, and 
illustrate the implications of the use of four important projections on a 
certain representative situation in photographic imaging. 

The article is not a treatise on panoramic photography or on the 
complicated issue of choosing a projection to be used as the premise 
for the preparation of panoramic images. 

INTRODUCTION 

In a number of fields of mathematics and technology, the term 
projection is used to mean the process of mapping an array of points 
in three-dimensional space to locations on a flat (or flattenable) 
two-dimensional surface. A projection is a particular algorithm for 
doing so. 

As the use of the term “mapping” in its description hints, the matter 
of projection first became of interest in connection with the making of 
maps of the earth’s surface (cartography). That surface is essentially 
the surface of a sphere, which is not flattenable, yet we wish to 
portray locations and regions on it, and their relationships, on a flat 
map. Thus projections were devised that would allow this to be done 
in consistent ways, with the resulting maps having various desirable 
properties (generally representing different compromises between 
objectives that are mutually incompatible in the situation). 
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The term “projection” itself comes from a way in which we can 
visualize the process. Imagine that the details of the earth’s surface 
are painted on a hollow glass globe with translucent paint. We place a 
point light source at the center of this globe and allow this to project 
the image of the surface detail on a flat, or flattenable, surface (which 
might be a plane, the surface of a cylinder or cone, or even the 
surface of a polyhedron). While we rarely actually make maps this 
way, the metaphor helps us to set up the geometric or mathematical 
transforms that are actually used. 

In photography, we start with a collection of scene points in 
three-dimensional space, and end up with an image on flat film. Thus 
we unavoidably practice projection whenever we do this. 

But we rarely use the term in connection with “ordinary” photography. 
One reason is that we almost always practice (at least approximately) 
the same projection there. 

But we do hear a lot about projection in the specialized field of 
panoramic photography. There, we make photographs whose vertical 
and/or horizontal span is quite substantial. This ordinarily requires 
special technique, such as taking several images with a conventional 
camera, changing its aiming angle between the shots, and then joining 
together the resulting images, or using a camera that “scans” the 
scene in some way while laying down the image through a slit onto a 
long strip of film. 

When we do this, we unavoidably encounter conflicts between what 
we might want to adopt as characteristics of the resulting image. We 
can trade off between these objectives by the adoption of different 
projections in the overall process. 

In fact, the camera itself practices a certain projection (perhaps in a 
special way), and we then rely on the “panoramic image assembly” 
software, while it is at it, to make a transformation of the delivered 
image into a form that is relatable to the original scene by some 
specific projection.  

There are many misunderstandings about this matter. In this paper, I 
hope to clear some of these up, and give some insight into the 
conceptual structure underlying the matter. 

TWO WORLDS 

Much of the misunderstanding that we encounter in the matter of 
projection as it applies to photography comes about from the fact that 
there are two contexts in which the same collection of projections are 
used, the cartographic (map-making) and photographic contexts. 
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One important distinction, and the source of much of the difficulty, is 
this. In the cartographic context, we generally view the “object field” 
as a collection of points or objects on the surface of a sphere1. We are 
concerned with their locations in terms of latitude and longitude, and 
we are concerned with distances along paths that lie on the surface, 
such as the distance from London to Copenhagen along a great circle 
of the globe, or the distance from the northeast corner of my home lot 
to the southeast corner along a line of constant compass bearing. 

In the photographic field, we can of course view the entire collection 
of object points in which we are interested as if they were really on 
the interior of a spherical surface of arbitrary diameter with us at the 
center. And each such point can then be described in terms of latitude 
and longitude (and sometimes we in essence do that, although we are 
actually likely to speak of their elevation and azimuth). 

But this paradigm does not relate well to most of our actual interests 
in photography. For one thing, the distances we are interested in don’t 
lie along a great circle of this fanciful sphere. They exist in actual 
three dimensional space, for example the distance from the top to the 
bottom of the northeast edge of a rectangular building, or the distance 
between the bases of two telephone poles along a road. 

So the terminology used to describe the distinguishing properties of 
certain well-known projections, contrived in the world of cartography 
(where they were devised), make no sense in the context of 
photography. One aspect of this dichotomy is discussed in 
Appendix A. 

Similarly, the graphic figures we often see used to explain the 
behavior of various projections in the photographic context typically 
assume that the camera is regarding the inside of a hemisphere on 
which are inscribed lines of latitude and longitude. The pattern of the 
images of these lines is of little use in understanding what a particular 
projection would do it we were to, for example, photograph a large 
building, or an entire city from a hilltop. 

In this article, we will try to get beyond this. 

THE PINHOLE MODEL 

Introduction 

We spoke at the outset of the actual origin of the term “projection” as 
coming from a way we could, actually or fancifully, make a flat map 

                                      

1 Or of an “almost sphere”, such as the ellipsoid used to represent the surface of the 
Earth (known as the geoid: “Earth-like”). 
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from a small glass globe model of the earth by “projecting” the image 
onto our flat or flattenable receiving surface. 

In our photographic context, we can do a similar thing. We can 
consider our “scene” as regarded by a basic camera (in fact a pinhole 
“lens” is really handy here), and imagine our film as being in one of a 
number of shapes (flat, curved into part of a cylinder, and so forth). 
By considering rays from various scene points and where they strike 
the film, we can come to understand the properties of the projection 
our particular model represents. 

A word of caution: we will discuss in detail four well-known 
projections. Two of them can be understood by this “pinhole film 
camera” model, but two cannot. These are each defined in terms of a 
mathematical transformation from one of the projections we can 
understand through the pinhole model. 

Now, the way in which we might want to understand the behavior of 
a projection depends on what we are going to photograph. Here, I will 
choose an illustrative, but not at all universal, situation. This relates to 
such tasks as the photography of the façade of a large building, when 
the camera is aimed “straight on” at the façade. 
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Figure 1. Model for rectilinear projection 

The rectilinear projection 

In figure 1, we use the pinhole film camera model to look at the 
projection that we actually hope to employ in most “ordinary” 
photography. In cartography, this is spoken of as the plane projection. 
In photography, we typically call it the rectilinear projection. 
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 “H” represents the pinhole or our hypothetical camera. “F” is the film, 
which lies in a plane (thus the cartographic name of the projection). 
“O” is the object plane, which contains our building façade. We 
assume it to be parallel to the film plane. 

The perpendicular distance from the pinhole to the object plane is D, 
and to the film plane is d (the dashed line is the perpendicular). 

On the object plane, we see a set of X and Y axes, on which the 
locations of object point can be described in terms of their 
coordinates, X and Y. Similarly, on the film place, we see x and y 
axes, on which the locations of object point can be described in terms 
of their coordinates, x and y. Their origins are both at the 
perpendicular though H. 

We also see an arbitrary object point, P. The ray from it though the 
pinhole will fall on the film plane at p. 
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Figure 2.  Image point coordinates 

In figure 2A, we look at this from overhead. We see the “projection” 
of ray P-H-p (another use of the word projection) onto a horizontal 
plane. Angle λ  (lower-case Greek lambda) is the horizontal angle 
between ray P-H-p and the perpendicular. 

In figure 2B, we look at the system from the side. We see the 
projection of ray P-H-p onto a vertical plane. Angle ϕ (lower-case 
Greek phi) is the vertical angle between ray P-H-p and the axial ray. 
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The symbols λ and ϕ are the customary symbols for longitude and 
latitude. Their use here helps us to transfer the math involved between 
the cartographic and photographic contexts. 

We note in figure 2A that the “object side” and “image side” triangles 
are similar (in the formal geometric sense). This means that all the 
angles are the same between them, and the lengths of corresponding 
sides have a consistent ratio between them. 

Thus, we can readily see that the horizontal coordinate of the image 
point, x, is given by: 

X
D
d

x −=  (1) 

Similarly, on figure 2B, we can determine that the vertical coordinate 
of the image point, y, is given by: 

Y
D
d

y −=  (2) 

The two minus signs remind us that the overall image, as is normal in 
a camera, is reversed from the orientation of the scene. 

The horizontal magnification here is given by: 

D
d

my −=  (3) 

and the vertical magnification by: 

D
d

mx −=  (4) 

Note that the magnifications are not only equal but also constant; they 
do not vary with location (since both d and D are constants). And they 
are both negative, recognizing the image reversal. We often do not 
mention that in cnasual photographic work. 

Thus, the image is a scaled version of the object plane (is similar to it, 
in the geometric sense), a situation we speak of as rectilinear 
reproduction. 

An important secondary property of this projection is that any straight 
line in the scene, regardless of orientation, will be rendered as a 
straight line in the image. 

Now, if we can get an actual lens to do as well in this regard as our 
pinhole does, we say it is rectilinear, or that is has no geometric 
distortion. 
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And, in the photographic context, the projection modeled here is called 
the rectilinear projection. 

The cylindrical projection 

Now we will apply our pinhole film camera model to the cylindrical 
projection2 (figure 3). 
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Figure 3.  Model for Cylindrical projection  

As before, we have the film surface (F), which in this case is formed 
into part of a cylinder, and the object plane (O). The pinhole (H) is on 
the cylinder axis (shown dotted). We must fancifully assume a pinhole 
that can admit light from an angle substantially off to the side. 

Also as before, we have an arbitrary object point, P, and its image, p, 
on the film. 

To analyze the behavior of this system, we need to examine it further 
in two views (figure 4). 

In figure 4A, we see the model from above. We note that the 
perpendicular distance from the pinhole (and cylinder axis) to the 
object plane is designated D. and the radius of the cylinder (and its 
perpendicular distance from the pinhole) is r. We see the projection, on 

                                      

2 In fact, this and several other related projections are sometimes collectively spoken 
of as “cylindrical” projections, in which case this specific one is often called the 
cylindric perspective projection or the central cylindrical projection. 
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a horizontal plane, of the ray from object point P to image point p. In 
this case, the horizontal angle between that ray and the perpendicular 
line from the object plane to the pinhole (shown dotted) is designated 
λ (again, the analog of longitude). 
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Figure 4.  Image point coordinates 

We designate the horizontal coordinate of the object point as X, and 
the horizontal coordinate of the image point on the film as x (we 
measure this along the film surface, which will be a normal plane 
distance once the film is flattened out). 

The horizontal distance from the object point to the pinhole, Rh,  is 
D/cos λ, and thus increases for object points displaced horizontally 
from “origin”. But the distance from the pinhole to the image point is 
constant at r. Thus, as we consider object points further and further 
horizontally from the origin, we see that the magnification (which is 
r/R) decreases. So this projection will certainly not be rectilinear in the 
horizontal direction. 

In figure 4B, we see the model from the side; more precisely we look 
at a section of the model in a vertical plane containing the ray P-H-p. 

Because of our choice of a section plane, we actually see the ray 
P-H-p in its real size (not projected). We can see by inspection (from 
the similar triangles) that the vertical magnification (which is r’/R) is 
constant regardless of the height of the object point (for a particular 
horizontal location of the object points, a certain value of λ). But, as 
we saw just before, the actual value of that magnification does 
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depend on the horizontal position of the object point (because of the 
appearance of λ in the expression for R). 

We’ll see the implications of all this on actual imaging a little later. 

The equirectangular projection 

We cannot directly understand the equirectangular projection with any 
physical projection mode (even a fanciful one)l. It is derived from the 
cylindrical projection by the application of a particular mathematical 
function to the vertical axis. 

The original objective of this projection, in the cartographic context, 
was that the N-S (vertical) scale remains constant as we increase in 
latitude, where that scale is based on source distances measured 
along a path on a spherical surface (such as on the surface of the 
Earth), not along a vertical, planar object field.  

In our context, where we most often will want to consider vertical 
scale as based on actual vertical object distances, this projection 
produces a severe decline in vertical scale as we go to greater heights. 
(We will see later the impact of this on taken images.) 

So do not be confused by statements that the vertical scale of this 
projection is constant. This issue is explored at length in Appendix A. 

The Mercator projection 

As with the equirectangular projection, we cannot directly understand 
the equirectangular projection with a physical projection model. It too 
is derived from the cylindrical projection by the application of a 
(different) mathematical function to the vertical axis. 

The original objective of this projection, in the cartographic context, 
was that the N-S (vertical) scale for any latitude will equal the E-W 
(horizontal) scale for that latitude, where both those scales are defined 
in terms of source distances along a sphere (the earth’s surface). In 
fact, in the photographic context, for all the projections we study 
here, the horizontal scale does not change with height, and the nicety 
of the Mercator projection keeping vertical and horizontal scales 
synchronized does not happen. 

In fact, with the Mercator projection, as we go up in height, the 
vertical scale (based on actual vertical subject distances) does decline, 
but not as rapidly as with the equirectangular projection. 

So do not be confused by statements that the vertical scale of this 
projection is consistent with the horizontal scale. Again, this issue is 
explored at length in Appendix A. 
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EFFECT ON IMAGES 

Introduction 

Next we will look at the effect of the behavior of these four 
projections on an actual image. Consistent with our premise in the 
prior section, our situation will be the photography of a hypothetical 
building façade, 100 feet wide and 100 feet high. Our camera is 
located on a line that runs from the center of the foot of the façade at 
its middle, perpendicular to the façade, and is 100 feet from the 
façade (aimed along that perpendicular line). The building conveniently 
has a decorative pattern of vertical and horizontal lines across it, at 10 
foot intervals. We will examine how this pattern of lines is represented 
in the image. 

Note that here we cannot speak in general of the plane on which the 
image is developed as the “film” plane (even allowing that to include 
the possibility of a digital sensor). In multi-frame panoramic 
photography, the image defined under a certain projection is not 
formed in the camera, but rather is prepared by the panoramic image 
assembly software. The result is deposited onto a pixel array in the 
computer’s memory, from which a digital output image is generated. 

It is true that for the rectilinear and cylindrical projections, the image 
can be generated directly in the camera (a special camera being 
required for the cylindrical projection case. But not for the other 
projections we study. 

Thus, for generality, we refer to the plane on which the image of the 
scene is developed as the “image” plane. 

We will “plot” the results of the recording of a “test scene” on the 
image plane using a uniform grid, seen in Figure 5. 
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Figure 5. The image plane grid 
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The origin of the coordinate system (0,0, circled in this illustration for 
clarity) corresponds to the point on the image plane to which the 
scene point at the bottom of the building, at the left-right center, is 
mapped. (Note that we only contemplate here scene points that are 
above the “horizon”.) 

The reason for the particular scale we use for the two coordinate axes 
will become apparent when we first put this grid to use. 

Rectilinear projection 

In figure 6, we see the result using the rectilinear projection (which, as 
you recall, is what we ordinarily aspire to have for ordinary 
photography with a modest field of view). 
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Figure 6. Rectilinear projection 

The heavy lines are the images of the lines on the façade of our 
hypothetical building. We have chosen the scale of the image plane 
grid so the image of the building just fills the grid. As we see, in this 
case, the images of the lines on the building façade fall directly on the 
lines on the film grid, and thus we do not see the grid lines 
themselves. Here, the markings on the right side and bottom of the 
chart label the images of the horizontal and vertical building lines in 
terms of the locations on the building of the actual lines they 
represent. 

We can clearly see that that this situation is one of “no geometric 
distortion”, and thus the projection that produces it is worthily called 
rectilinear. We might think that we would want to use it for all 
photography. 

But there are limitations to the use of this projection in the generalized 
field of panoramic photography. For one thing, it is only even 
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mathematically meaningful for a horizontal field of view not greater 
than 180°. In fact, it rarely produces sensible results for a field of 
view greater than about 120° . 

It is at its best when our use of panoramic techniques is to embrace a 
wide building façade, and in particular when we want a result that is 
geometrically comparable to an “elevation” drawing (that is, has 
constant horizontal and vertical scales as we ascend the façade). But 
this in fact does not necessarily best mimic the human experience in 
viewing a building. 

Why? Well, in general, human beings scan their vision up and down 
when looking at a tall building, and they grasp objects on the upper 
portions of the façade when their line of sight is elevated. Thus, the 
scale of objects to the eye varies with the angle of elevation of the 
line of sight. In fact, the horizontal scale to the “scanning” eye 
declines as the cosine of the angle of elevation of the line of sight, and 
the vertical scale declines as the square of that cosine! 

It is for this reason that we may use in postprocessing of regular 
photographic images what can be called an “inverse perspective 
correction” when starting with a rectilinear image of a tall building, in 
order to produce an image that will seem familiar to the viewer. We’ll 
see shortly how we can deal somewhat with this issue in panoramic 
photography through choice of the projection to be used for the 
deliverable image. 
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Figure 7. Cylindrical projection 

Cylindrical projection 

Now we see the result under the cylindrical projection (figure 7). We 
make the image plane grid represent the same scale, vertically and 
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horizontally, at the center of the foot of the façade (0,0), as in the 
case with the rectilinear projection. 

Before we proceed, keep in mind that the grid of light lines, while 
representing the coordinate system on the image plane, is also exactly 
the same as an “undistorted” image of the building grid. Thus, the 
difference between the light line grid and the heavy-line building grid 
can be thought of as an indication of the geometric distortion caused 
by the cylindrical projection. 

In the image we see several interesting features. For one thing, both  
horizontal and vertical scale decrease as we go to the left and right of 
center (the vertical and horizontal lines of the building grid image get 
closer together the farther we go from the center), a property of the 
cylindrical projection. 

Why does this differ from the result with the rectilinear projection? 
Well, the rectilinear projection is really intended for capturing 
accurately the layout of detail on a subject lying in a plane. It nullifies 
the effect on scale of the increasing distance to the building as we go 
to the left or right of center. 

But the cylindrical projection (like its variants we will see in a little 
while) is intended to capture a very wide field of view (perhaps even 
360°). To do so, it has to deal strictly with the radial distances of 
individual object regions from the camera. Thus, when we regard a 
planar object, such as our building façade, we find that both the 
horizontal and vertical scale of the image declines for parts of the 
building horizontally off the center line—where the radial distance from 
the camera increases. 

Now, lets consider the vertical scale in a little more detail. Note that 
for any given lateral displacement, the vertical scale is constant over 
the entire height of the building. What about the fact that the upper 
portions of the building are at a greater radial distance from the 
camera than the lower portions? Well, just as in the case of the 
rectilinear projection, the cylindrical projection compensates for this. 
(It is inherent in the geometry of the “pinhole model”, just as with the 
rectilinear projection.) 

With regard to a subject such as a large building façade, this 
projection produces a result that essentially recognizes perspective in 
the horizontal direction but not vertical. 

Equirectangular projection 

In figure 8 we see the behavior of the equirectangular projection. 
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Here, as in the case of the cylindrical projection, we find that both 
vertical and horizontal scale declines as we move to the left or right 
from the midpoint of the building. But note that, for any given 
horizontal position, the vertical scale is not uniform as we go up on 
the façade. It declines with height—at the left-right center, rather 
dramatically for heights above perhaps 30% of the distance from the 
camera to the center of the façade. 
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Figure 8. Equirectangular projection 

In fact, the decline in vertical scale with elevation angle follows cos2 φ. 
This is just what the human eye experiences in viewing a tall building 
through “scanning”. 

Thus, we might think that the equirectangular projection would 
produce an image that is more consistent with the human experience 
in viewing tall buildings. But its horizontal magnification does not vary 
with elevation (true of all the elevations we study here), although the 
horizontal magnification in the human experience varies with cos φ. 
Thus the proportions of such things as “upper-story windows” may 
seem “too squashed” to the human viewer. Perhaps then a projection 
having a more modest “compression of height” may in fact be overall 
the best in this kind of work. We’ll see such a projection next. 

The Mercator projection 

A compromise between the height compression behavior of the 
cylindrical projection (none) and the equirectangular projection (lots) is 
attained with the Mercator projection, as we see in figure 9. 

Here again we see that the image scale, both vertically and 
horizontally, declines with lateral distance from the center—an 
unavoidable consequence of the fact that all these projections (all said 
to be in the “cylindrical” family) must recognize actual radial distances 
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form the camera. If they did not, they could not possible produce a 
uniform result across the large angular horizontal field of view that is 
involved. 

Here, at any given lateral displacement, we also find a “height 
compression”—a systematic decrease in vertical scale as we ascend 
the façade. But note that it is more modest than for the 
equirectangular projection. 
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Figure 9. Mercator projection 

Thus, in many situations, the Mercator projection may produce an 
attractive visual result. 

VARIATIONS IN SCALE AS MATHEMATICAL FUNCTIONS 

In Appendix B, we see in tabular form the mathematical variations in 
scale (both vertical and horizontal) with variation in altitude (φ) for the 
four different projections. 

Remember that scale in this sense is the ratio of the size of the image 
of some feature to the size of the feature itself (in this case, in the 
vertical direction). 

A related, but different, matter is the vertical mapping function itself. 
This is for example what we see directly illustrated on such charts as 
figure 7.  It can be defined as the ratio of the height at which the 
image point appears to the height of the object point (both 
“normalized” to the overall scale of the chart). 

This is not the same as the variation in scale, which in fact is the first 
derivative of the mapping function. Said in the other direction, the 
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mapping function is the integral of the function of the variation in the 
scale. 

“NATIVE PROJECTIONS” IN PANORAMIC PHOTOGRAPHY 

Of some interest is the “native” projection produced by the cameras 
themselves used in panoramic photography. 

In “multi-frame” panoramic photography, the native projection 
practiced by the camera itself, onto the film or digital sensor, is (very 
close to) the rectilinear projection. But of course it has a different 
“axis” for each frame. 

Thus, were we to “stitch together” these various frame images 
without any further transformation (except perhaps for that needed to 
make them join tidily), the overall final image would not in fact reflect 
any well-known projection. (Actually, we could define a projection that 
would match that. In its pinhole model the film would be formed into a 
polygonal prism, not necessarily a regular one.) 

But in fact, modem panoramic image assembly software generally 
offers us the opportunity to transform the “first image” to one that 
will reflect a certain projection. 

In “swinging camera” panoramic photography, as with the famous 
“Cirkut” camera series, the native projection (delivered on the film 
negative) is the cylindrical projection (although we must be careful to 
keep the relationship between vertical and horizontal scales proper, 
which involves a lot of fiddling with the gears that drive the camera 
around in azimuth and move the film across a slit behind the lens). 

In “swinging lens” panoramic photography, as with the famous 
“Widelux”, “Noblex”, and “Horizon” cameras, the native projection 
(delivered on the film negative) is also the cylindrical projection. Here 
correspondence between vertical and horizontal scale is inherent in the 
design.  

FISHEYE LENSES 

In the use of fisheye lenses (lenses that produce a very wide field of 
view in a symmetrical manner)  we are also interested in the projection 
used. In fact, there are different projections used in this field. All are 
radially symmetrical. Their discussion is beyond the scope of this 
article. 

PRAXIS 

I have chosen to illustrate the properties of our four projections with 
an arbitrary photographic task. Panoramic photography is often an 
incredible mix of various situations. Imagine for example the classical 
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case of a big U-shaped building, or a cityscape with numerous 
buildings, streets and so forth. What would we like to do to these 
elements in the image, and is there a projection that will help us do 
this with acceptable compromises? 

The actual matter of selecting the most appropriate projection in 
panoramic photography is well beyond the scope of this article (and in 
fact beyond my own skill). But, hopefully, the information above will 
help to properly interpret and understand what we read about these 
projections. 
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APPENDIX A 

 

Several times in the body of this article I call attention to the fact that 
the “scale” of the image produced by a projection may have a 
different meaning in the cartographic sense (where the projection is 
used to define a way to map the surface of the Earth on a flat map) 
and the photographic sense (in which the projection is used to define 
the way to map three-dimensional space onto a flat “film”). 

In figure 10, we will see this distinction illustrated. 

s

Sp

Sc

φ

O

F

H

C

 

Figure 10. Cartographic and photographic scale 

Classically, the model of projection in the cartographic context 
involves the features of the surface of the earth “painted” on a hollow 
spherical globe. A point light source at the center of the globe 
“projects” the various surface features onto our receiving surface 
(which must be flat or flattenable). 

But the model of projection used in the photographic context actually 
represents a pinhole film camera, regarding a scene of illuminated 
objects. 

To allow us to compare the implications of scale in these two 
contexts, we will use here an alternate model of the cartographic 
situation. Here, the earth’s features are painted on the inside of a 
hollow sphere. This is regarded by a pinhole camera with the pinhole 
at the center of the sphere. (Perhaps we only use part of the sphere, 
since a pinhole camera has a limited field of view anyway.) The 
behavior of this model is identical to that of the classical projection 
model. 
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In figure 10, we see (in section) such a partial sphere, along with the 
camera pinhole (“H”) and the film (we will use here the plane, or 
rectilinear, projection, and thus the film lies in a plane). The sphere is 
labeled “C” (for cartographic, or perhaps even for ”celestial”). The film 
plane is labeled “F”. 

I earlier emphasized that in cartography, when we discuss scale, we 
mean the ratio of the dimension of some feature on the map to the 
actual dimension on the Earth’s surface. In particular, the “source” 
dimension  is measured along the surface. 

In photography, we are not normally concerned with distances along 
the surface of some hypothetical sphere centered on the camera 
pinhole. Rather, we are concerned with actual distances in the real 
world. 

When we speak of the “vertical” scale of the image produced by a 
particular projection, perhaps at a particular “height”, it means that the 
“source” dimension we consider is actually vertical—perhaps it is the 
height of an upper-story window on a building façade. So, following 
that thought, we also see in figure 10 our familiar photographic object 
plane, O. 

Now lets consider the situation of our cartographic and photographic 
contexts at a certain angle, ϕ. In the cartographic context, this is the 
latitude on our fanciful sphere of the object of interest; in the 
photographic context, this is the elevation angle to the object of 
interest. 

To make the figure tidy, I have chosen two distances, one along the 
surface of the sphere in the “N-S direction”, and one vertically along 
our object surface, that produce images of the same length on our 
film. 

The length of that image on the film, for either context, is designated 
S. The corresponding distance in object space is designated sp for the 
photographic context and sc for the cartographic context. 

Now, for the cartographic context, the scale, mc, is given by: 

c
c S

s
m =  (5) 

while for the photographic context, the scale, mp, is given by: 

p
p S

s
m =  (6) 
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Note that what we here call scale (because of the parallel with the 
cartographic situation) is called in most photographic discussions 
image magnification. Its definition is identical to that of equation 6. 

From the geometry, we can clearly see that Sp is longer than Sc. In 
fact: 

ϕ2cos
c

p
S

S =  (7) 

Thus, mp will be less than mc. In fact: 

cp mm ϕ2cos=  (8) 

One cos ϕ  factor comes from the “foreshortening” of Sp because of 
its oblique observation by the camera (Sc is regarded “head on”); the 
other cos ϕ factor (making up cos2 ϕ )  comes from the fact that Sc is 
farther away from the camera than Sc. 

Now if we make this comparison “at the horizon” (ϕ=0), we would 
find Sp and Sc to be the same length for a given length of s. (I didn’t 
bother to draw that, hoping that it would be obvious.) Thus, at the 
horizon, mp and mc are equal. 

We noted earlier that for the rectilinear projection (upon which this 
discussion was based), the vertical scale (in the photographic sense) is 
unchanging as we go up on the object plane (that is, as ϕ increases).  
But from what we have just seen, this means that for the rectilinear 
projection, the vertical (N-S) scale in the cartographic context 
increases as ϕ increases. The same is true for the cylindrical 
projection. 

In fact, for any projection, regardless of how the two scales change 
with ϕ, the relationship between the two at any value of ϕ is always: 

cp mm ϕ2cos=  [8] 

Thus, we can see how statements about the various projections, such 
as “with the equirectangular projection, the vertical scale is constant” 
and “with the Mercator projection, the vertical scale is always the 
same as the horizontal scale”, which apply only to the cartographic 
context, can seem to not fit what we know about the photographic 
context. That’s because they just don’t apply there (in our usual 
outlook on scale in photography). 

Horizontal scale 

We haven’t spoken much about horizontal scale, largely because in 
the rectilinear projection it is constant, and in panoramic photography 
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with really large horizontal field of view it isn’t meaningful (that is, 
based on an “object plane”). If we consider an array of scene objects 
at the same distance from the camera (“the Colosseum from inside”), 
then for all the projections other than rectilinear, the horizontal scale 
(based on distances along the “Colosseum wall”) will be constant, for 
any azimuth, for any elevation.   

But there is a similar situation to the one we just discussed with 
regard to the cartographic vs. photographic perspectives. 

Without benefit of a corresponding illustration, let me note that the 
horizontal magnifications, k, for the two contexts are always (for any 
of the projections we study) related this way: 

cp kk ϕcos=  (9) 

The difference here from the relationship of the two vertical 
magnifications (equation 8) is that here there is no concept of 
foreshortening of the object length—only the matter of distance from 
the camera. Thus there is only one cos ϕ factor (just cos ϕ altogether). 

# 
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APPENDIX B 

Variation in scale with latitude/elevation 

 

The symbol φ represents the latitude in the cartographic context, the 
elevation angle in the photographic context. 

 Cartographic context Photographic context 

Scale 
(from distances on geoid) 

Scale 
(from distances on 

object plane1) 

Projection E-W N-S Horizontal2 Vertical2, 4 

cylindrical3 ϕcos
1

 
ϕ2cos

1
 constant constant 

Mercator ϕcos
1

 
ϕcos

1
 constant ϕcos  

equirectangular ϕcos
1

 constant constant ϕ2cos  

rectilinear ϕcos
1

 
ϕ2cos

1
 constant constant 

Notes: 

1. Object plane vertical and perpendicular to camera axis, which 
strikes it at the center of its bottom. 

2. Variation from value at “bottom” with elevation (ϕ ) , for any given 
azimuth (λ); actual value varies with azimuth (except for rectilinear 
projection) 

3. “Classical” cylindrical projection, sometimes called cylindric 
perspective or central cylindrical projection. 

4. Note that these functions of variation of the vertical scale are for 
the scale, as applies to a small image distance and the corresponding 
object  distance. This is not the same as the mapping function, which 
relates the vertical position of an image point to the vertical position of 
the corresponding object point. The mapping function is in fact the 
integral of the scale variation function. 

# 


