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ABSTRACT AND INTRODUCTION 

In a solar photovoltaic (PV) electrical energy system, the power that 
can be developed at any instant is approximately proportional to the 
solar irradiance on the PV panel array. This in turn is the product of 
the incident solar flux density and the cosine of the angle between the 
direction of the sun and the normal to the panel surface. 

At any moment, that angle is a function of the orientation of the panel 
(the direction in which its normal points) and the direction of the sun 
(which we can characterize as comprising its elevation above the 
horizon and its azimuth), with the latitude of the site a parameter. 

Thus, in projecting the output of a planned solar photovoltaic system, 
it is necessary to take into account the angular “travel” of the sun 
over the site, which in turn requires us to be able to calculate the 
position of the sun, in terms of its elevation and azimuth, at intervals 
over the daylight hours of a day, and then over many days (perhaps all 
the days of a year).  

In this article, I give and discuss the equations that, as a close 
approximation, give the elevation and azimuth of the sun for a given 
location at a given time in a given date. 

An appendix gives the equation for calculating the solar declination, a 
parameter that appears in that equation. 

In another appendix, I develop on a geometric basis the equation for 
the elevation of the sun at solar noon on four special days: the days of 
the vernal equinox (spring), summer solstice, autumnal equinox (fall), 
and winter solstice. In a companion appendix, I demonstrate how 
these results are consistent with the more general equation for the 
elevation. 

1 THE ELEVATION OF THE SUN 

1.1 Introduction 

By elevation of the sun we mean, at the place and time of interest, 
“how high the sun is above the horizon”, as an angle. If the sun were 
directly overhead, its elevation would be 90°. 
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1.2 The general equation 

If we ignore some pesky second-order matters, the general equation 
that tells the elevation of the sun is: 

sin sin sin cos cos cosE D L D L H   (1) 

where: 

• E is the elevation of the sun above the horizon. 

• D is the declination of the sun. This is the angle by which, at the 
instant of interest, the sun is above (or below, with a negative 
value) a plane through the Earth’s equator. At the summer solstice1 
it has a value of about +23.44°, and at the winter solstice  about 
-23.44°. At the equinoxes, it has the value 0. The general equation 
for the declination of the sun for any day is given in Appendix B. 

• L is the latitude of the site. 

• H is the hour angle of the instant of interest. It has the value 0 at 
solar noon for the site (i.e., when the sun is at its highest 
elevation), and increases by 15° for each hour after, or decreases 
by 15° (becoming negative) for each hour before. 

We can of course solve Equation 1 for E itself, giving: 

 arcsin sin sin cos cos cosE D L D L H   (2) 

Keep in mind, though, that because of the nature of the sine function 
this has multiple solutions, although the correct one should usually be 
obvious. 

1.3 On astronomical elevation 

The work above (and that to follow) is specifically in terms of the 
astronomical elevation of the sun. The equation is based on a 
geometrical model, and presumes that the sun’s rays travel along a 
straight path. 

Especially just around dawn and just around dusk, the elevation of the 
sun as observed differs slightly from the astronomical elevation. That 
is principally a result of the refraction of the sun’s rays as they pass 
through the atmosphere in that situation. But the difference is, with 
the sun near the horizon, only about 0.6º, and quickly decreases as the 
elevation becomes greater. 

 

                                      

1 See section Error! Reference source not found. in Appendix C for a description of 
the “four special days”. 
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2 THE AZIMUTH OF THE SUN 

2.1 Introduction 

By the azimuth of the sun we mean in which compass direction does 
the sun lie (assuming it is not directly overhead, in which case its 
azimuth is undefined). 

In various fields the definition of the azimuth of a certain direction 
follows different conventions. Here I will use the convention that due 
North is the angle origin, and the angle is measured clockwise from 
that origin.  

2.2 The approximate equation 

The equation that gives a good approximation to the azimuth of the 
sun is: 

sin cos
sin

cos
H D

A
E


  (3) 

where: 

• A is the azimuth of the sun 

• H is the hour angle of the time at which we want to know the 
azimuth (as defined in Section 1.2). It is zero at local solar noon. 

• D is the declination of the sun on the date of interest (as described 
in Section 1.2. It ranges over teh year between +23.44° and 
23.44° 

• E is the elevation (as calculated in Section 1.2). 

We can of course solve that equation for A itself, thus: 

sin cosarcsin
cos
H DA

E
   

 
 (4) 

Keep in mind, though, that because of the nature of the sine function 
this has multiple solutions, although the correct one should usually be 
obvious. 

-#- 
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Appendix A 

The equinoxes and solstices 

A.1 THE FOUR SPECIAL INSTANTS, AND THEIR DAYS 

Of interest here are four special instants that occur through each 
astronomical year, the vernal equinox, summer solstice, autumnal 
equinox, and winter solstice. They have precise astronomical 
definitions, but I will not trouble you with those, as we will not need 
them. 

Almost exactly, the four special instants are separated by an interval 
of 1/4 of the astronomical year (365.25 days in length), or 91.3125 
days (91 days 7.5 hours). 

But we most often think, a little more loosely, in terms of the days 
during which they occur. Because of the interval between them is not 
an integral number of days, the astronomical year is not an integral 
number of days in duration, and because of the “hiccup" caused by 
the leap year system, the dates of those days follow an irregular 
pattern. 

A.2 DEFINITIONS 

These are pragmatic definitions of these four events in terms of the 
days on which they occur. 

Vernal (spring) equinox. “Equinox” means (approximately) “equal 
night” (the duration of the night being equal to the duration of the 
day). Its pragmatic definition is that it is the day in which (if we ignore 
some pesky second order matters) the duration of day (sun above the 
horizon) and night (sun below the horizon) are equal. 

That day is considered the beginning of astronomical spring. The date 
is always around March 20 (the exact range of dates depends on for 
what time zone we reckon the day). 

Summer solstice. ”Solstice” means (approximately) “sun stopped” (the 
sun stopping its upward or downward movement at its extreme so the 
sun can then move in the other direction). Its pragmatic definition is 
that it is (if we ignore some pesky second order matters) the longest 
day of the year: the day in which the sun is above the horizon for the 
greatest length of time. 

That day is considered the beginning of astronomical summer. The 
date is always around June 21. 

Autumnal (fall) equinox. This is, like the vernal equinox, the other day 
of the year in which the length of day and night are nominally equal. 
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That day is considered the beginning of astronomical fall. The date is 
always around September 22. 

Winter solstice. This is the counterpart of the summer solstice. It is 
the shortest day of the year. That day is considered the beginning of 
astronomical winter. The date is always around December 21.  

A.3 ALTERNATE NAMES 

Today these days are often spoken of as the March equinox, June 
solstice, September equinox, and December solstice, not just to be 
clearer to the reader (who may be unsure what “vernal” means) but 
also to avoid terms that only work in the northern hemisphere. 
However, here I will use the “traditional” terms as listed just above. 

-#- 
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Appendix B 

Solar declination 

B.1 INTRODUCTION 

An important factor in the general equation for solar elevation 
(Equation 1) is what I have labeled D, the solar declination. It is the 
angle by which, at the instant of interest, the sun is above (or, with a 
negative value, below) the plane passing through the earth’s equator. 

B.2 THE APPROXIMATE EQUATION 

If we disregard some second order matters, the equation for the solar 
declination is (the sine function being degree-based): 

23.44 sin 360
365.25

dD         
 (5) 

where D is the solar declination on the day of interest and d is the 
number of days that the day of interest falls after the vernal equinox.  

The constant 365.25 is the length of the astronomical year in days. 
The constant 360 is so that the argument of the sine function (which 
works in degrees) will be 180° when (d/365.25) is 0.5, etc. Thus the 
value 23.44° is modulated by one cycle of a sine function over the 
astronomical year. 

But now that we understand where it comes form, we can write that 
equation more compactly as: 

36023.44 sin
365.25

dD    
 

 (6) 

Another approximation, based on an assumed date for the winter 
solstice, is (the cosine function being degree-based): 

 360 1023.44 cos
365.25

JdD      
 

 (7) 

where dJ is the number of the day of the year after January 1 
(January 1 thus being “0”).  

This equation is based on the notion (always correct give or take a day 
or so) that the winter solstice occurs 10 days before the end of the 
year (on December 22). Because the starting point here is the winter 
solstice, the whole thing is shifted from the situation in Equation 6 
(which based on the vernal equinox) by 1/4 of an astronomical year, 
or 90°, thus the casting of the equation with the cosine function 
rather than the sine function. 

-#- 
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Appendix C 

Geometric demonstration 

C.1 INTRODUCTION 

In this appendix I will develop, by geometric construction, the 
equations for the elevation of the sun at four special instants: solar 
noon (when the sun is at its highest point for the day) on four “special 
days” (as discussed in Appendix A). 

C.2 GEOMETRIC DEMONSTRATION 

C.2.1 On both equinoxes 

The work here assumes a site in the Northern hemisphere. 

It turns out that the maximum elevation of the sun on the vernal 
equinox is the same as on the autumnal equinox. I will derive this 
value for both of those working on figure 1. 

 
Figure 1. Maximum solar elevation—vernal or autumnal equinox 

Here (and in the figures to follow) we see the Earth and the sun as 
projected on a plane that include the polar axis of the earth (P on the 
figure) and the sun (S). In that case, the equator always projects as a 
line (E). 

The site of interest (X) is at a latitude L (+40° in this example). Z is 
the site zenith (the point directly overhead), and H represents the 
horizon. Thus lines X-Z (or C-Z) and X-H are orthogonal. 

Because the distance from the Earth to the sun is so great compared 
to the diameter of the earth, at any instant all rays of light from the 
sun to any points on the Earth can be considered parallel. Accordingly, 
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we can consider the sun to be at either position P or P’, so long as line 
s’-X is parallel to line s-C (and I have made it so in the figure). 

So we can see by inspection that angle s’-X-Z is the same as angle 
s-C-Z, whose measure is L, the latitude of the site. 

And the elevation of the sun above the horizon, angle s’-X-H, is the 
complement of that earlier angle, and so is 90°-L. 

C.2.2 On the summer solstice 

Here I will work from figure 2. 

 
Figure 2. Maximum solar elevation—summer solstice 

Here, in our projection plane, the earth’s polar axis (P) is tilted 
clockwise by angle T, the angle of the “tilt” of the Earth’s axis, which 
is approximately 23.44°. We can see by inspection that angle s-C-X is 
L–T. But, since line s’-X is parallel to line s-C, angle s’-X-Z is also L–T. 
Angle s’-X-H is the elevation of the sun above the horizon, and is the 
complement of that prior angle, or 90°–(L–T), which we can write as 
90°–L+T). 
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C.2.3 On the winter solstice 

I will work from figure 3. 

 
Figure 3. Maximum solar elevation—winter solstice 

Here, in our projection plane, the earth’s polar axis (P) is tilted 
counterclockwise by angle T (approximately 23.5°). We can see by 
inspection that angle s-C-X is L+T. But, since line s’-X is parallel to 
line s-C, angle s’-X-Z is also L+T. Angle s’-X-H is the elevation of the 
sun above the horizon, and is the complement of that prior angle, or 
90°–(L+T) , which we can write as 90°–L–T. 

2.3 Summary 

Thus, we find that the maximum elevation of the sun above the 
horizon is (where L is the site latitude and T is the tilt of the Earth’s 
axis): 

• Vernal equinox (March 20-21): 90°–L   

• Summer solstice (June 20-22): 90°– (L–T) or 90°–L+T 

• Autumnal equinox (September 22-23): 90°–L 

• Winter solstice (June 20-22): 90°– (L+T) or 90°–L–T 

We note that the overall annual maximum elevation of the sun (in the 
northern hemisphere) occurs on the summer solstice, and is of course 
less as the site latitude increases. 

In Appendix D I show how these results are consistent with those 
given by the general equation (Equation 1) 
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Appendix D 

Agreement with the general equation for solar elevation? 

D.1 INTRODUCTION 

Here I examine whether the results the astronomical elevation of the 
sun developed geometrically for the special cases discussed in 
Appendix C agree with the results for those same instants from the 
general equation for elevation. Of course, they should agree. 

That general equation for the astronomical elevation of the sun is: 

sin sin sin cos cos cosE D L D L H   (8) 

where: 

• E is the elevation of the sun above the horizon 

• D is the declination of the sun, the angle by which, at the instant 
of interest, the sun is above (or below, for negative values) the 
plane passing through the Earth’s equator. At the summer solstice 
it has a value of +23.44°, and at the winter solstice –23.44°. At 
the equinoxes, it has the value 0. The general equation for any day 
is given in Equation 6. 

• L is the latitude of the site. 

• H is the hour angle of the instant of interest. It has the value 0 at 
solar noon for the site, and increases by 15° for each hour after, or 
decreases by 15° (becoming negative) for each hour before. 

D.2 AT SOLAR NOON ON EITHER EQUINOX 

In the geometric derivations in the body of this note, I had always 
assumed the situation at solar noon, when H would be zero. Then 
Equation 1 becomes: 

sin sin sin cos cosE D L D L   (9) 

On either equinox, D is zero, and so the preceding equation becomes: 

sin cosE L  (10) 

but since: 

cos sin(90 )x x    (11) 

the previous equation becomes: 

sin sin(90 )E L    (12) 

and therefore (if we ignore the multiple solutions problem) : 

90E L    (13) 
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Which is exactly what the geometric analysis gave. 

D.3 ON SOLAR NOON AT THE SUMMER SOLSTICE 

At the summer solstice, D is +T and so (again at solar noon) the 
equation becomes: 

sin sin( )sin cos( )cosE T L T L   (14) 

If I (arbitrarily) define a new “pawn” variable t, as (90-T), I can replace 
T with (90-t), getting: 

sin sin(90 )sin cos(90 )cosE t L t L     (15) 

But since: 

 sin cos90 aa   (16) 

and 

 cos sin90 aa   (17) 

we can rewrite Equation 15 as: 

sin cos sin cos sinE t L L t   (18) 

We also know that: 

sin( ) cos sin cos sina b a b a b    (19) 

So, by parallelism, Equation 18 becomes: 

sin sin( )E t L   (20) 

So (again not worrying about multiple solutions): 

E t L   (21) 

But t is not an actual variable in this matter– it was just a pawn in this 
little drama. So I replace t with (90–T), and get: 

 90E LT   (22) 

which I can rewrite as: 

90 ( )E T L    (23) 

Which is exactly what the geometric analysis gave. 

Of course the solution for the winter solstice is directly parallel to that. 

-#-  


