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ABSTRACT AND INTRODUCTION 

The modulation transfer function (MTF) of a photographic lens tells us 
how effectively the lens transfers a luminance variation in the scene 
(by which detail is conveyed) onto the focal plane, and in particular 
how that varies with spatial frequency (which we can think of as the 
“fineness” of the detail). This function indicates, objectively, the 
“resolving potential” of the lens. 

We often read of the MTF being determined using a slant edge target 
test. In this article we review the concept of the MTF and the 
principles of this testing technique. 

THE MODULATION TRANSFER FUNCTION 

We will examine the concept of the modulation transfer function by 
looking in sequence at the three words that make up its description. 

Modulation 

Modulation in this case refers to the variation in the luminance of a 
scene from point to point, and the corresponding variation in the 
illuminance from point to point in the image deposited by the lens on 
the focal plane (on the film or digital sensor). Detail is conveyed by 
such variation; if there is no variation in luminance, the scene is 
“uniform gray” and hardly worth photographing.1 

Modulation can be quantified in terms of modulation depth, a way of 
expressing the ratio between the maximum and minimum luminance 
(or illuminance) across a certain small part of the scene (or image). 

Transfer 

For our purposes here, the job of the lens is to transfer the luminance 
variation of the scene into an illuminance variation on the image. It 
does this incompletely, for various reasons. We can quantify the 
degree to which it accomplishes this job in terms of the modulation 
transfer ratio. This is the ratio of (a) the modulation depth of the 

                                      

1 For the sake of simplicity, we will assume only “monochrome” scenes and “gray 
scale” photography, so that luminance/illuminance is the only property of interest. 
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illuminance deposited on the image to (b) the modulation depth of the 
luminance of the scene (usually within a small region). 

The modulation transfer ratio is quite parallel to the gain of an 
amplifier stage in an electronic system. 

Function 

In mathematics, when the value of one variable quantity depends on 
the value(s) of one or more other variable quantities, in some specific 
way, the first variable is said to be a function of the other variable(s). 

Under this concept, we may say that “x is a function of y and z”. That 
means that the value of variable x (called the dependent variable) is 
determined by the values of variables y and z (called the independent 
variables). 

A specific name identifying a function can, in common practice, mean 
three distinct things: 

• The variable x itself (after all, we said “x is a function . . . “). 

• The value of x for a certain set of values of the independent 
variables (the “value of the function” for that situation). 

• The overall relationship by which x depends on y and z (the 
function proper). 

This diverse use of the function name can be confusing if we have not 
been forewarned about it. 

Graphic representation of a function 

If a variable is a function of one other variable (“x is a function of y”), 
we can show the relationship graphically in the familiar way—a plot of 
“x against y”. 

If one variable is a function of two other variables (“x is a function of 
y and z”), we cannot show the relationship graphically in the familiar 
way. 

Often what we will do then is to take one of the independent variables 
and (arbitrarily) consider it to be a parameter (it is still an independent 
variable; we just handle it a little differently). Suppose we decide to 
treat z as the parameter. 

We adopt some specific value of z and, holding that constant, plot the 
variation of x with y (labeling the curve with the value of z). Then we 
take another specific value of z and, holding that constant, again plot 
the variation of x with y (labeling that curve with the new value of z). 
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The result is what we often describe as a “family of curves”, one 
curve for each of our chosen values of the parameter, z. 

But we can equally legitimately decide to treat y as a parameter. Then 
we choose a certain value of y and, holding that constant, plot the 
variation of x with z, and so forth. 

Which of those we do will depend on the context in which we wish to 
visualize the variation of x. 

The modulation transfer function 

For a given lens with a given aperture (and focal length setting, if 
relevant), the modulation transfer ratio varies with several factors, 
most prominently: 

• The spatial frequency2 of the modulation (which we can think of as 
the “fineness” of the detail the modulation conveys). Typically the 
modulation transfer ratio decreases as the spatial frequency 
increases. 

• The location in the image of the area of interest (notably its 
distance from the optical axis of the lens. Typically the modulation 
transfer ratio decreases as we move from the optical axis. 

Thus, the modulation transfer ratio is a function of spatial frequency 
and distance off axis. 

This function is called the modulation transfer function (MTF) of the 
lens. And of course, as we discussed earlier, the term MTF is also 
applied to the modulation transfer ratio (which we then never hear of 
under its own name), or to its value in a particular situation. 

Two presentations 

As we mentioned above, when a variable is a function of two other 
variables, there are two ways to present the relationship graphically, 
choosing either of the two independent variables to play the role of a 
parameter. 

For scientific or optical engineering work with the MTF, we normally 
select distance off the axis as the parameter, and plot the modulation 
transfer ratio against spatial frequency (preferably in cycles/mm). But, 

                                      

2 Spatial frequency has dimensions of cycles per unit distance. In scientific work, the 
unit is typically cycles per millimeter. Often this unit is spoken of in optical work as 
“line pairs per mm”, but sometimes as “lines per mm”, a source of considerable 
confusion. There are historical justifications for both these conflicting practices; 
these are beyond the scope of this article. 
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given the dual use of the term MTF, we are almost forced to say, “we 
select distance off the axis as the parameter, and plot MTF against 
spatial frequency.” In other words, this form of the MTF is a plot of 
MTF against spatial frequency.  

However, when MTF data is presented by lens manufacturers, they 
customarily select spatial frequency as the parameter, and plot the 
“MTF” (meaning the modulation transfer ratio) against distance off 
axis. Usually, there are only two curves, for a “low” and a “not so 
low” spatial frequency.3 

DETERMINING THE MODULATION TRANSFER RATIO 

The classical concept 

The classical concept of determining the MTF of a lens involves 
presenting it with patterns having repetitive variations in luminance (of 
a known modulation depth) at different spatial frequencies. Then, the 
pattern deposited on the focal plane is examined (perhaps with a 
special instrument, or perhaps by capturing it with precisely calibrated 
film) and noting the modulation depth for each test pattern. We make 
this determination both at the center of the image and then at 
locations at successively greater distances from the axis. The two 
modulation depths, for each combination of spatial frequency and 
distance off axis, are compared to get the modulation transfer ratio.  

This is then plotted against the appropriate non-parameter independent 
variable for the desired form of presentation. 

Although in the form of the MTF curves presented by lens 
manufacturers often only two spatial frequencies are treated, for 
scientific work it is important that we have the MTF at numerous 
spatial frequencies. Doing so requires test exposures done with 
numerous test targets, each having patterns of lines at various 
spacings. 

A more modern method 

The availability of computers to easily perform sophisticated 
manipulation of data, and the fact that a digital camera inherently has 
an instrument for measuring illuminance the focal plane (its sensor), 
have led to the adoption of a quite different technique for determining 
the MTF of a lens, the slant edge target technique. This technique is 
the actual subject of this article. 

                                      

3 Actually, there are often eight curves, accommodating two values of the 
parameters aperture and modulation axis. 
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THE SLANT EDGE TARGET TECHNIQUE—CONCEPT 

An “analog” in electrical engineering 

The underlying concept of the technique can perhaps be most clearly 
seen by considering an electrical engineering example. 

The MTF (in the sense of a plot of modulation transfer ratio against 
spatial frequency) is quite parallel to the matter of the “frequency 
response” of an electronic amplifier, where we plot the gain of the 
amplifier (the ratio of the output voltage to the input voltage) as a 
function of frequency (in this case “temporal” frequency, in hertz). 

Not surprisingly, the classical technique for determining the frequency 
response (we can call it the “gain function”) involves presenting the 
amplifier with signals of known voltage at different frequencies, and in 
each case, measuring the output power. The plot of the gain (ratio of 
output voltage to input voltage) against frequency is the voltage gain 
function. 

But there is a way to determine this with a “one shot” test (and the 
term is very apt). We submit to the amplifier what is called an 
impulse, a single pulse which (ideally) has zero duration (zero width) 
but still contains energy. 

When we do this, a certain waveform comes out of the amplifier. It is 
called the impulse response of the amplifier. If we capture that (just 
one test is needed), we can from it determine the entire voltage gain 
function (gain as a function of frequency). 

How can this be? Well, the impulse contains energy at all frequencies 
(in theory, up to infinity), with a uniform distribution. If we take the 
Fourier transform4 of the output waveform, the result is a description 
of the frequency content of that waveform. And, given that the input 
signal contains “all frequencies”, uniformly, that description will be the 
voltage gain function (or “voltage frequency response”). 

Well, clever as this sounds on paper, there are some practical 
problems with actually doing it. One is that our impulse, if it is truly to 
have a zero duration (zero width in time) but nevertheless contain 
some energy (and of course, if it didn’t there would be no output from 
it), it must (theoretically) have infinite amplitude (voltage). Let’s be 
thankful we can’t actually do this; if we could, our amplifier would 
blow up during the test. 

                                      

4 A mathematical “process” that takes a description of a waveform and from it 
develops a description of its frequency content. 
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And making a pulse have zero width isn’t possible either. 

So we resort to a variation of the theme. Here, instead of using an 
impulse as our input we use a step function. This is a waveform that, 
for example, starts out at +1.0 volt and then, at a certain point in 
time, instantaneously changes to –1.0 volt. Again this is not possible 
to actually achieve, but it is a lot easier to approximate than an 
impulse with zero time width and infinite voltage. 

After applying this (just once) to our amplifier, and capturing the 
output waveform, we then take the Fourier transform of that. The 
result, as before, will be the frequency response (gain function) of the 
amplifier (although in this case, it is in terms of power gain rather than 
voltage gain).  

Now, back to optics 

If we present a “zero-width” bright line to a lens, it is the optical 
equivalent of the impulse in the electrical situation. Unless the lens has 
“infinite resolution”, the image of that line on the focal plane will be a 
pattern having non-zero width, across which the illuminance varies in 
some way. This is called the line spread function (LSF) of the lens. 

If we take its Fourier transform, we get what turns out to be the 
square root of the modulation transfer ratio as a function of spatial 
frequency: the modulation transfer function (MTF). 

But of course, just as for the electrical impulse, this “zero width” line 
is impractical to make, and for it to have enough photometric energy 
that we can see the pattern of illuminance on the focal plane, it would 
have to have “essentially infinite” luminance. 

So we follow the same ploy used in the electrical situation. We use a 
“test scene” that is black up to a straight line boundary and white 
beyond it—the optical equivalent of the electrical step function. 

For any “real” lens, the image of that test scene will not have a zero 
width boundary between dark and light regions, but rather a boundary 
of some finite width, across which the illuminance varies in some 
way. The plot of illuminance across that boundary is called the edge 
spread function (ESF) of the lens. 

If we measure this illuminance pattern take its Fourier transform, we 
get the modulation transfer ratio as a function of spatial frequency: 
the modulation transfer function (MTF). 

Wow! Is this neat or what! 
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THE REALITIES 

The need 

In order to do this, for MTFs of the kind we fortunately encounter with 
modern lenses, we have to be able to measure the illuminance 
pattern—the edge spread function—with very high resolution. 

Of course, a practical advantage of this technique is that we can use 
the camera sensor itself to measure the illuminance pattern. But the 
theoretical resolution of the sensor array is not sufficient to discern 
the illuminance pattern with sufficient resolution. We see this 
illustrated in Figure 1. 

a.

b.

d.

c.

 

Figure 1. Resolving the edge spread function 
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In panel a, we see a hypothetical edge spread function (as would be 
observed downstream from the lens under test). The gray grid is at 
the pixel pitch of the camera sensor array, in order to give an idea of 
the scale. 

In panel b, we see what would happen if the edge image was located 
in a certain way on the pixel grid. (We only consider pixels along a line 
perpendicular to the boundary). The plot line across the “band” for 
each pixel shows the pixel output (only a single value for any pixel, of 
course). Note that the overall sensor output for this row of pixels  
seems to be a perfect “step function” (in electrical terms). 

In panel c, we see a slightly different location of the image. Now we 
see a different pixel output—still certainly not a precise representation 
of the illuminance pattern itself. 

In panel d, we see yet another possibility—again not even close to a 
precise representation of the illuminance pattern. 

So regardless of which one of these happens—and this is essentially 
beyond our control—the illuminance pattern suggested by the sensor 
output is useless for precise analysis. 

So we must “fake” enhanced resolution of the sensor. 

The slant edge target 

Enter now the title character of this drama. As before, we present the 
lens with a target with a black portion and a white portion, with a 
sharp boundary between. But we intentionally orient it so that the 
boundary does not match the pixel axis of the sensor array, by a small 
angle. Now, a fascinating drama can play out; we can follow it on 
Figure 2. 

We see the image of the target laid out on the sensor pixel detector 
grid. (The black portion is shown in gray to allow the entire grid to be 
seen.) Each square represents the “domain” of one pixel detector. But 
we will assume that each detector actually only responds to the 
illuminance at the center of its domain (where we will show a dot if 
we are interested in the output of that detector). 

The variation in illuminance (the edge spread function) happens along 
the “ESF axis” direction, and of course it happens identically all across 
the edge. That is, the illuminance will be constant along any line 
parallel to the boundary (a certain distance from the edge); the 
variation in illuminance will be the same along any line parallel to the 
ESF axis (which is drawn in an arbitrary location). 
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 Figure 2. Operation of the slant edge target 

We first consider the response of the line of pixel detectors (hereafter, 
just “pixels”) highlighted in panel a. These pixels pick up the 
luminance of the “edge spread pattern” at various distances from the 
boundary, which are evenly spaced. That illuminance is the same all 
along the associated dotted line, drawn parallel to the boundary. Thus 
a measurement taken at any point along such a line represents the 
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illuminance every place along it (including where the line crosses our 
arbitrarily-drawn “ESF axis”, along which we are interested in the 
variation of illuminance). 

The reason we have only concentrated on one row of pixels in this 
panel is not because they have any special role, but merely because if 
we started by considering all the pixels, the drawing would have been 
so busy that it might have been hard to grasp the principle from it. 

But now that we know what we are looking for, in panel b we 
consider the response of all the pixels over a larger region. Recall that 
the output of any pixel represents the illuminance any place along a 
line parallel to the boundary. Thus we have again drawn the lines 
parallel to the boundary through each pixel point. The illuminance is 
the same along any of these lines. We’ve not drawn them dotted as 
that is just too “busy” for this already-too-busy drawing. But we have 
drawn slightly bolder the ones shown in panel a. 

We see now that the suite of output data from all these pixels has told 
us the luminance along each of many lines parallel to the boundary, 
and very closely (and evenly) spaced. These values are in fact the 
luminance at points with that particular spacing along our 
arbitrarily-drawn ESF axis. 

Accordingly, this suite of data gives us a “high-resolution” description 
of the variation of illuminance along the ESF axis; that is, a 
high-resolution description of the ESF itself, which we require to make 
a precise determination of the MTF. 

The spacing of the “samples” of the ESF is in fact the pixel pitch 
multiplied by the sine of the angle of “rotation” of the target. In our 
illustration (where the rotation is about 11.3° 5), this is a little less 
than one-fifth the pixel pitch. Thus, our clever approach gives us an 
effective resolution of about five times that which could be given by 
the sensor array in normal use. 

Because the pixel detectors actually do not pick up the luminance at a 
point (as suggested by our example), but rather respond to an average 
of some sort over a region approaching the domain of the pixel, 
certain special steps have to be taken in the evaluation of the edge 

                                      

5 This is a greater angle than that usually used for such tests, adopted here for 
clarity of the illustration. One widely used test target uses an angle of about 5.7°, 
specifically a slope (tangent of the angle) of 1:10. The tidy repetitive pattern of 
”sample” distances we see in the example requires an angle whose tangent is a ratio 
of integers, preferably “1/n”. 
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spread function from the set of collected pixel detector values. This is 
a well-known matter in digital signal processing. 

Note that the axis along which the edge spread function is considered 
(by definition, perpendicular to the “edge”) is not either axis of the 
pixel array. This is not really of any consequence to us; the edge 
spread function exists in two dimensional space regardless of the 
orientation of the target.6 

Target orientation  

Any given scheme for determining the MTF with the slant edge 
technique will have an “intended” rotation of the target edge. 
However, we cannot always assure that this angle is exactly achieved. 

MTF analysis software for use with the slanted edge target technique 
typically contains provisions for first deducing the exact rotation of the 
target edge from the data (you can visualize from Figure 2 how this 
generally could work) and then using the result in the actual analysis. 

SUMMARY 

The slant edge target approach allows a convenient “one-shot” 
determination of the MTF (in the sense of the modulation transfer ratio 
as a function of spatial frequency) by exploiting two clever ploys: 

• The use of the Fourier transfer to get the MTF from the edge 
spread function. 

• The use of the “slanted” target to get an effective resolution of the 
sensor array much greater than would be dictated by its pixel pitch 
so that the edge spread function can be adequately measured by 
the sensor array itself. 

# 

 

 

                                      

6 Actually, when we get into one of the esoteric subtleties of the MTF (the matter of 
“axis of modulation”), the direction of the ESF axis is of concern. We can deal with 
that by thoughtful choice of at what points in the image (at different distances from 
the center) do we run tests.  


