

Copyright 2008 Douglas A. Kerr. May be reproduced and/or distributed but only intact, including this
notice. Brief excerpts may be reproduced with credit.

MIDI Plumbing Inside a PC

Douglas A. Kerr

Issue 2
September 20, 2008

ABSTRACT AND INTRODUCTION

Various “electronic” music activities inside a PC involve the
transmission between entities of “MIDI message streams”, streams of
coded messages that describe a musical performance. The flow of
these streams from one entity to another is not over the traditional
MIDI electrical interface, but rather over a “logical interface”, similar to
the ones between applications and I/O devices such as printers and
keyboards (the overall arrangement of which can be described as
“MIDI plumbing”). Because of the asymmetry of this interface, there
arises the concept of entity gender, which may impede us from
arranging certain useful information flows. In this article, we describe
this architecture, explain the limitations it imposes, and discuss
various ways to circumvent those impediments.

MIDI—THE MUSICAL INSTRUMENT DIGITAL INTERFACE

The basic concept

The acronym MIDI—Musical Instrument Digital Interface—is used to
identify a range of related concepts in the field of electronic music.

It initially described just what it seems to, a (physical) interface
through which we could transmit to a musical instrument
(conventional or “synthesized”), in real time, the note-by-note details
of a musical performance, so as to automate that performance. The
interface is defined at a number of levels: physical, electrical,
transmission format and rate, and syntax at several levels. Such an
interface is usually referred to as a “MIDI interface” even though the
word “interface” is in fact covered by the acronym itself.

A complementary use is to convey from a MIDI-aware keyboard (and I
don’t mean here a “keyboard instrument”, which actually produces
sound—just the keyboard itself1) a “performance” done on that
keyboard to a device that would store it so that it could later be sent
to an instrument to recreate the performance.

A later, closely related development is the “standard MIDI file”, a
standardized computer file format for storing a complete description of
a musical performance in a way that is directly relatable to its

1 That keyboard might, of course, be a part of a “keyboard instrument”.

MIDI Plumbing inside a PC Page 2

real-time description as a MIDI message stream. For the most part, the
file consists of a transcription of a sequence of MIDI messages with
time tags.

A device functionally called a “MIDI sequencer” (we would today more
commonly say “MIDI player”) can read such a file and from it generate
a MIDI message stream that is sent (over a MIDI interface) to a MIDI
instrument.

MIDI devices

In the original world of the MIDI interface, the term “MIDI device” is
often used to describe any entity that could send and/or receive MIDI
message streams. We’ll see later that a slightly different usage comes
into play inside a PC.

Directionality and connectors

Some MIDI devices emit MIDI streams, some receive them and act on
them, and some do both. A full-blown MIDI interface thus has two
paths, one for information passing from device A to device B and one
for information in the opposite direction. From a physical standpoint,
these appear on separate physical connectors at both ends. Normally,
the MIDI input and MIDI output ports appear as “chassis-mounted”
jacks (female pins) on the MIDI device.

MIDI cables, having identical male-pin plugs on both ends, are used to
connect the output of one device to the input of another2. One can of
course use a cable to connect the MIDI output of one device to the
MIDI output of another device, but nothing will happen.

Since we connect one output to another input, the matter of “tagging”
cables to keep track of them in a complex installation can be rather
tricky.

We can think of the complementary nature of input and output ports
as a matter of port gender.

Peerage

The definition of the interface itself involves no implied concept of
“master/slave”. All output ports are electrically the same, and all
input ports are electrically the same (but different from input ports—
input and output ports are electrically complementary.)

2 The wiring is “pin-to-pin”.

MIDI Plumbing inside a PC Page 3

Of course, in an overall operation of a “setup” of MIDI devices, there
will often be a functional asymmetry, sometimes properly describable
as a master-slave relationship—but it is not a creature of the interface
definition.

INSIDE THE PC

Introduction

Our objective here is to talk about the flow of MIDI streams inside a
PC.3 In this environment, we can encounter a number of MIDI-aware
entities (I avoid the term “device” for a reason that will shortly be
abundantly clear.) These are often functional analogues of familiar
“external” MIDI devices.

Important entities include (some names are in bold for a reason that
will appear shortly):

• Synthesizer. This accepts a MIDI stream and generates the sound
of the performance it describes, often by emulating the sound of
traditional musical instruments. The resulting sound is typically
amplified and sent to loudspeakers. The synthesizer may be part of
an accessory “sound board” or embedded on the computer’s
“motherboard”. We consider the synthesizer to be “hardware”,
although today it inevitably involves one or more microprocessors
running elaborate suites of firmware.

• MIDI interface module.4 This hardware device mediates between a
classical MIDI interface (physical/electrical) and the interior of the
PC. It would typically be used to link “external” MIDI devices (a
MIDI-aware piano, for example, or a MIDI-aware keyboard) to
software MIDI entities inside the computer. The interface module
may be on a distinct accessory board, part of an accessory “sound
board”, or even embedded on the computer’s “motherboard”.

• MIDI sequencer. This gets its traditional name in that it emits a
sequence of MIDI messages to represent a musical performance.
Today we may more likely call it a “MIDI player”. It typically reads
a MIDI file and from it generates a MIDI message stream describing
the performance, to be passed to a MIDI instrument for rendition.
The kind we find inside a PC is a software application.

3 Note that the concepts discussed here are generally applicable to implementation
on Mac computers, but some of the details, implications, and terminology will differ.

4 Such a device is sometimes referred to as an “MPU”, a reference to one of the first
popular items of the type, the Roland MPU-401.

MIDI Plumbing inside a PC Page 4

• Scoring program. These software programs are to a musical score

what a word processor is to textual documents or a CAD program
to engineering drawings. Common scoring programs include
Encore, Finale, and Sibelius. These programs allow us to construct
a musical score following the complex syntactical and graphic
conventions that are involved. Scoring programs typically allow us
to “play” (or “audition”) a score by emitting a stream of MIDI
messages to a MIDI instrument. They may also be able to accept a
MIDI stream from, for example, a keyboard, and record the
performance in score form.

• MIDI editor program. These software programs allow sophisticated
manipulation of MIDI files representing performances, in fact even
allowing the performance to be wholly created. Common MIDI
editors are Cakewalk, Sonar5, and Master Tracks Pro. Like scoring
programs, these can then emit a MIDI stream describing the
“composition” for audition purposes. They can also accept a MIDI
stream from, for example, a keyboard, so as to capture the
performance it represents as part of the “composition” being
constructed.

We will encounter other, more specialized, MIDI entities a bit later.

The “logical” MIDI interface

Inside the PC, MIDI streams are passed between the various entities
over what we can call the “logical MIDI” interface. This is wholly
software oriented. It revolves around the “device driver” architecture
and syntax of the computer, administered by the operating system. It
wholly parallels the architecture used for applications to interface with
familiar I/O devices such as printers, the computer keyboard, and so
forth.

The entities whose names appear in bold in the list (e.g., synthesizer)
of entity examples are, in general, basically hardware devices (they
may, however, have a large software or firmware content), and as
such, must be supported by device drivers to be accessible to
software applications. Those drivers have to be installed, and they are
“loaded” every time the computer starts.

The other entities in the list (e.g., MIDI sequencer/player) are software
applications. They are only “loaded” when they are “launched”. Just

5 In fact, programs like Sonar go far beyond the MIDI editor capability, allowing the
manipulation and integration of both “note-oriented” (MIDI) music descriptions and
actual sound files, with provisions for editing both.

MIDI Plumbing inside a PC Page 5

as a word processor application is able to send information to a printer
only by way of the printer driver (using an appropriate protocol under
the auspices of the operating system), these MIDI applications are able
to access a device such as an internal synthesizer by way of its device
driver.

Nor surprisingly, in the context of MIDI life inside the PC, such things
as a synthesizer or MIDI interface module, which are “devices” from
the computer architecture perspective, are referred to as “MIDI
devices”. We don’t use that term for the MIDI applications (which are
not “devices” from the perspective of computer architecture).

However, the external, physical analogues of these MIDI applications
would be called “MIDI devices”. This difference in notation is the
cause of confusion when discussing the concepts in this article.

Scoring
program
(Encore,
etc.)

Internal
synthesizer

Logical
MIDI

interfaceApplications

out

MIDI
interface
adapter
("MPU")

External
(physical/
electrical)
MIDI
interface

in

out

Speakers

in

MIDI editor
(Cakewalk,
etc.)

MIDI player

R

T out

in

Device
driver

Device
driver

Device
driver

SoundBlaster
sound card

out

in

out

out

Distant device selection capability (for establisihng connections)

MIDI devices

Some connections that cannot be established.

Some connections that can be established.

none

none

Electrical paths

Software

Hardware

Logical paths

Figure 1. PC MIDI architecture

Entity gender

Because of the role of the device driver, we find that our entities have
been cast into two groups, which we can think of as separated by
entity gender. An entity of one gender (such as a scoring program, an
application) can only “link up with” an entity of the other gender (such
as a synthesizer, a device). Of course, we can also only link an output
on one entity with an input on another, under the concept of port

MIDI Plumbing inside a PC Page 6

gender. These two gender concepts, and the limitations they provide,
are distinct, but are often confused.

Figure 1 illustrates this architecture and the implications of entity
gender.

On the right side of the figure, we show two illustrative familiar
“hardware” MIDI entities6 (here, “MIDI devices”), which have already
been described. We also see the device drivers with which they are
equipped.

The figure also shows, on the left, three illustrative MIDI-aware
software applications, which have also been earlier described.

The green lines show illustrative paths for the flow of MIDI messages
that can be put into effect. They all lead from an output on an entity
of one gender to an input on an entity of the other gender.

The red lines show illustrative paths that cannot be put into effect
because of the gender dichotomy. (I don’t show unworkable attempts
to link two inputs or two outputs; we should well understand this, and
it would clutter the drawing.)

Who handles the hoses?

Inside our computer, how do we control how an output of one entity
is linked to an input of another entity (necessarily of the “opposite
entity gender”)?

This is always done at the application end. For example, in the scoring
program Encore, if we wish to cause its MIDI output to go to the input
of a certain one of my internal synthesizers, I open a “MIDI setup”
dialog in Encore and open a dropdown menu for “Output”. That menu
will list all the existing MIDI devices (in the sense discussed above)
having inputs. I choose the synthesizer of interest. The result will be
that the MIDI stream emitted by Encore on its MIDI output will be
directed by the computer’s operating system to the input of the device
driver for that synthesizer.

Similarly, if I want Encore’s MIDI input port (used, for example, to
“capture” an incoming MIDI stream for recording as a score) to receive
the MIDI stream emitted by my MIDI interface module (having arrived
over a physical/electric interface from, for example, a MIDI keyboard),
I open a dropdown menu for “MIDI Input”. This menu lists all the

6 Of course today we will usually find microprocessors, running elaborate firmware
suites, inside these units. But they overall are treated like hardware.

MIDI Plumbing inside a PC Page 7

existing MIDI devices (in the sense discussed above) having outputs. I
choose the MIDI interface module. The result will be that the MIDI
stream emitted by the receiving portion of the device driver for the
MIDI interface module will be directed by the computer’s operating
system to the MIDI input port of Encore.

So in all cases, the “hose handling” is directed by the application
involved, and the choices are made on dialogs in that application.

The little “knob” graphics on the ports of the MIDI applications in the
drawing represent this “distant port selection” process.

NOW IT GETS MORE DIFFICULT

So far, we have investigated an interesting “gender dichotomy”
among MIDI entities inside the PC, but the overall organization of the
system seems to take care of it.

As we seek to do some more specialized, useful, and still sensible
things, we find that we are impeded. Suppose, for example, that we
wanted to direct the MIDI stream generated by our Encore from a
score to the input of out MIDI editor, where it can be captured as a
“composition”, perhaps for detailed examination of its properties, or
maybe to make such subtle adjustments to the durations of certain
notes. That would make sense functionally.

But we just can’t do it. Since both Encore and our MIDI editor are
applications, they are of the same entity gender, and the fundamental
biological laws of our computer architecture do not provide for them
to mate. If, on the MIDI editor, we open the “input” dialog to select a
distant source, we will not find the output of Encore listed—Encore
isn’t a device, and only devices are listed. And of course the operating
system has no direct provision for one application to send MIDI
streams to another application anyway.

There is a workaround. Suppose we made a device driver that actually
didn’t attach to a device. It would have both an input and an output
“virtual port” (just like the driver for, say, our MIDI interface module),
but what comes in its input port is just transmitted verbatim through
its output port. It might be best to describe it as “quasi device driver”
since no “device” is actually involved.

Then we can set up the situation shown in figure 2.

MIDI Plumbing inside a PC Page 8

Scoring
program
(Encore,
etc.)

Logical
MIDI

interfaceApplications

out

in

in

out

MIDI devices

Quasi-
device
driver

Device driver side
MIDI loopback

none

MIDI editor
(Cakewalk,
etc.)

out

in

Figure 2. MIDI loopback (device side)

A handy device-side MIDI loopback quasi-driver is MIDI Yoke,
published by Jamie O’Connell, who also publishes the Midi Ox MDI
monitor application (which we will mention later). It is available here
(free):
http://www.midiox.com

Now, let’s consider another need in which we will be frustrated by the
gender limitation. Suppose we would like to take a MIDI stream from
the receiving branch of our MIDI interface adapter (perhaps received
from an external MIDI keyboard) and just direct it to our synthesizer
(so we can play a little concert on the keyboard). Again, no
connection that will do this is accommodated by the basic computer
architecture.

Internal
synthesizer

Logical
MIDI

interface

MIDI
interface
adapter
("MPU")

External
(physical/
electrical)
MIDI
interface

in

out

Speakers

MIDI
loopback
application

R

T out

in

Device
driver

Device
driver

Device
driver

SoundBlaster
sound card

out

in

out

MIDI devicesMIDI applications

Figure 3. Application-side MIDI loopback

But again there is a workaround. Suppose we have a trivial MIDI
application whose basic function is just to take a MIDI stream taken in
by its input and deliver it, verbatim, through its output. We can think
of it as an “application-side MIDI loopback”. With it, we can establish
the arrangement shown in figure 3.

MIDI Plumbing inside a PC Page 9

Note that as always for a MIDI connection inside the PC, the “hose
handling” is done by controls on the application—in this case, the
“application-side MIDI loopback”. Thus, in the figures, both its ports
show the familiar “little knob” icon.

One widely used “application side MIDI loopback” facility is Hubi’s
MIDI Cable, published by Hubert Winkler of Vienna, a developer of
various software tools for use in this general area. Winkler also
publishes a device-side MIDI loopback facility, but it is out of date and
evidently will not operate under, for example, the Windows XP
operating system. Hubi’s MIDI Cable, though, seems to work fine
under Windows XP.

Hubi’s MIDI Cable is (at this writing) available here (free):
http://www.geocities.com/mstella/hmidilb/hmdlpbk.html

It is included in the distribution package for Hubi’s MIDI Loopback
Device (the device-side loopback driver). There is an executable file
and an associated DLL. No special installation is required.

Single- and multiple-client ports

Suppose we wanted both Encore and our MIDI editor to take in a MIDI
stream entering the computer via our MIDI interface module? In most
cases, the output port of the interface module’s device driver is of the
“single client” form. That is, two applications cannot
contemporaneously choose to receive data from it. If we have elected
this port for linkage to the MIDI input of Encore, when we later try to
link it to the MIDI input of our MIDI editor, we get an error message
(either now or later when one of the applications tries to “open” the
nominated distant port). The error message comes from the
application.

This is not an inherent “logical” limitation (such a “fan out” linkup
would make perfect sense) nor is it a firm limitation of the operating
system. Rather, it is a limitation imposed by a design choice for the
device driver. The operating system provides for device driver output
ports that can be “attached to” by more than one receiving
application—said to be “multi-client” ports—but these are more
complex, and often the complication is just avoided during the design
by not providing that capability.

Similarly, suppose that we wanted both Encore and our MIDI editor to
direct its output MIDI stream to the input of our internal synthesizer.
Again, most commonly, this “fan-in” will not be allowed (the story is
the same as the “fan-out” issue discussed above).

MIDI Plumbing inside a PC Page 10

Note that even if the synthesizer input device driver were designed on
a “multi-client” basis, we don’t know for certain that the resulting
operation would make sense, in particular when both “sending”
applications were sending MIDI streams at the same time (perhaps one
justification for its not being designed that way).

The MIDI Yoke device-side MIDI loopback facility has multi-client input
and output ports (three “spigots” on each port for the current version).
This can be useful in establishing some of the “routings” we might
wish to have for various special tasks. Figure 4 shows how we might
exploit this capability, in two ways.

Scoring
program
(Encore,
etc.)

Logical
MIDI

interfaceMID applications

out

in

MIDI editor
(Cakewalk,
etc.)

out

in

none

MIDI monitor A

inDecode and
display

MIDI monitor B

inDecode and
display

in

out

MIDI devices

MIDI Yoke

Figure 4. Exploitation of multi-client ports

A new kind of MIDI application is introduced in this example, a MIDI
monitor. This is a MIDI application that receives a MIDI stream and
parses, decodes, and displays the messages. It can be very handy for
“debugging” both scoring programs and MIDI editors.7

Since this type of MIDI monitor is of the application entity gender, to
send a MIDI stream from another application to it requires a
device-side MIDI loopback pseudo-driver, such as MIDI Yoke.

In the example this figure illustrates we wish to be able to send a MIDI
stream from our scoring program to the monitor, and later send a MIDI
stream from the MIDI editor (perhaps representing the same musical

7 The use of one kind of MIDI Monitor, Midi Ox, is discussed in detail in the
companion article, “MIDI Monitoring in a PC”, by the same author, and available at
the same location as this article.

MIDI Plumbing inside a PC Page 11

“passage”) to the monitor, so that their details can be compared. We
would rather not have to do any rearrangement of the connections
between these two operations (as we may wish to go back and forth
between them repeatedly).

By exploiting the “multi-client” nature of the input port on the
loopback, we can choose it as the destination for the outputs of both
the scoring program and the MIDI editor.

Then, to further enlarge our example, suppose that we have two MIDI
monitors (as shown in the figure), perhaps with different analytical
capabilities, and would like to direct the “specimen” MIDI streams to
both. By exploiting the “multi-client” nature of the output port on the
loopback, we can just choose it as the source for the inputs of both
monitors.

Note that, as always, the establishment of the connections is made on
the application, by “distant device” controls associated with their
ports.

MIDI short circuits

The existence of these loopback tools allows the possibility that we
can improvidently set up a “feedback” path (sometimes called a “MIDI
short circuit”), around which a MIDI message would endlessly
circulate. This is not only fruitless but can consume significant
computer processing capacity. MIDI Yoke includes special capabilities
to detect such a situation and interrupt the message flow.

Special capabilities

Hubi’s MIDI cable provides optional “filtering” capabilities, so that (for
example) certain classes of MIDI messages, or messages tagged for a
certain MIDI channel, are blocked. The facility can also transform
certain messages into other messages, or redirect all messages tagged
for a certain MIDI channel to another channel. These capabilities can
be useful in performing special tasks. The details are beyond the scope
of this article.

Often, insinuating this tool into “normal” a message path, so it can
perform such interventions, is frustrated by entity gender
considerations, since its input and output ports are of the same entity
gender (application). (Imagine a garden hose in-line shut-off valve with
a male hose fitting on each end!) Thus, we may often have to employ
a loopback module of the other gender (a device-side loopback) with
it, just to make the gender matters “come out even”.

MIDI Plumbing inside a PC Page 12

Loopback via “conventional” applications

We saw in some of the figures, and briefly noted, that the typical
scoring program and the typical MIDI editor will have input, as well as
output, ports. As mentioned, these are typically intended to receive
MIDI streams from, for example, an external keyboard, a way for the
composer to quickly enter the notes of the musical passage to be
stored for further refinement.

Almost always, these applications provide for a “MIDI through”
capability, through which the MIDI message stream arriving through
the input port may be (in addition to being recorded) sent out the
output port. One motive for this is so that we can send the stream to
our internal synthesizer so that we can hear what we are playing.

We can then see that a “trivial” use of such an application is just as
an “application side loopback” for various situations.

Although not illustrated here, typical MIDI monitor applications also
provide the “MIDI through” capability, and can also intervene in the
MIDI stream being “passed through”, just as we discussed for Hubi’s
MIDI cable. As with that situation, since both ports of the monitor are
of the application entity gender, we may well have to employ a
device-side MIDI loopback to complete the path that we need.

