

Copyright 2008 Douglas A. Kerr. May be reproduced and/or distributed but only intact, including this
notice. Brief excerpts may be reproduced with credit.

MIDI Monitoring in a PC

Douglas A. Kerr

Issue 3
September 20, 2008

ABSTRACT

We may wish to be able to “observe” the MIDI message streams
emitted by various electronic music programs in our computer, such as
scoring programs or MIDI editors, perhaps in connection with trouble
shooting. Various software tools (“MIDI monitors”) allow these
message streams to be captured, parsed, decoded, and displayed
and/or printed for us. Their use is sometimes complicated by a gender
issue at the computer’s internal (logical) MIDI interface. In this article,
we describe a typical MIDI monitoring tool (MIDI Ox); discuss the
gender issue, and explain how it can be overcome; and give basic
guidelines for the use of MIDI Ox.

INTRODUCTION

MIDI monitors

Software applications usually described as “MIDI monitors” take a
MIDI message stream (which describes a musical performance), parse
and decode it, and display it on screen (and/or log it to a file which
can then be printed).

Some of these MIDI monitors also provide further functions, typically
provisions for intervening in the message stream on its way to the
destination “instrument” in order to modify the performance it
describes, perhaps in order to try out different ways to exploit the
capabilities of the instrument. For example, the score may currently
call for a certain part to be rendered by an oboe, but we would like to
hear how it would sound on an English horn without actually
modifying the score to try that out.

A very capable MIDI monitor that I use is MIDI Ox, published by Jamie
O’Connell. It is available here (free for noncommercial use):
http://www.midiox.com

This article discusses some of its features, how to put it into effect,
and the basics of how to use it.

MIDI software applications

Typical MIDI software applications that might be the source of the
MIDI message stream we wish to monitor include scoring programs,
MIDI editors, and MIDI sequencers (players). These will be

MIDI Monitoring in a PC Page 2

characterized a little later when we discuss the overall architecture of
a MIDI-aware computer.

The computer platform

All the discussions in this article are predicated on a PC-Windows
platform.

MIDI PLUMBING

Introduction

Our deployment of a MIDI monitor to observe the MIDI stream
generated by a MIDI application, such as a scoring program, is
complicated by the way in which MIDI information is passed between
entitles inside the computer, which I speak of as “MIDI plumbing”.

The traditional MIDI interface

MIDI stands for Musical Instrument Digital Interface. The interface1 in
its traditional form (not found “inside” a computer) provides a vehicle
for the transfer, between electronic music entities, of “MIDI message
streams”, which describe a musical performance, note-by-note.2

The original form of the interface is defined at the full range of layers:
physical (connectors and pin assignments), electrical, transmission
structure, transmission rate, message format, and message coding,
and syntax.

A given entity (“MIDI device”, in this context) may have an input port,
an output port, or both, depending on its overall functionality. In the
original physical/electrical form of the interface, input and output ports
appear on separate but physically identical jacks on the MIDI devices.
Any output port can be potentially connected, by way of a MIDI cable
(which has identical plugs on both ends), to any input port. Of course
for some physically-possible interconnections, depending on the
functionality of the devices, no sensible communication might result.

The logical MIDI interface

Inside a PC computer, various MIDI-aware entities are linked by a
“logical” interface. The concept is illustrated in figure 1. The message
format and syntax follow those of the original interface.

1 By custom, we speak of such an interface as “a MIDI interface”, not as “a MIDI”,
even though the word “interface” is included within the meaning of the acronym.

2 When the message stream for a performance is spoken of in its entirety, it may be
called a “MIDI sequence”.

MIDI Monitoring in a PC Page 3

On the right side of the figure, we show two illustrative “hardware”
MIDI entities.3 These are handled by the computer as I/O devices, and
thus are provided with device drivers to allow access to them by
MIDI-aware application programs.

Scoring
program
(Encore,
etc.)

Internal
synthesizer

Logical
MIDI

interfaceApplications

out

MIDI
interface
adapter
("MPU")

External
(physical/
electrical)
MIDI
interface

in

out

Speakers

in

MIDI editor
(Cakewalk,
etc.)

MIDI player

R

T out

in

Device
driver

Device
driver

Device
driver

SoundBlaster
sound card

out

in

out

out

Distant device selection capability (for establisihng connections)

MIDI devices

Some connections that cannot be established.

Some connections that can be established.

none

none

Electrical paths

Software

Hardware

Logical paths

Figure 1. PC MIDI architecture

One device we show is a synthesizer, which takes a MIDI message
stream describing a musical performance and (to the best of its ability)
executes that performance, creating the sounds of (probably multiple)
real or fanciful musical instruments by synthesis.

The second device we show is what can be called a MIDI interface
adapter. This mediates between the logical MIDI interface inside the
computer and an external traditional physical/electrical MIDI interface.4
It might be used, for example, to connect the computer to an external
synthesizer, or to an external keyboard (by which I don’t mean a

3 Of course today we will find microprocessors, running elaborate firmware suites,
inside these units. But they overall are treated as hardware.

4 We sometimes find this described as a “MIDI UART” in device lists, since it
revolves around a Universal Asynchronous Receiver-Transmitter, which assembles
(for output) and dissects (for input) the serial character format used for MIDI
messages at the physical/electrical interface. It is also often referred to as an
“MPU”, since the first common unit of this type was the Roland MPU-401. Today, it
is most often found as one portion of a sound card (a synthesizer being another
portion).

MIDI Monitoring in a PC Page 4

keyboard instrument, capable of producing sound, but rather just a
keyboard proper with a MIDI output interface).5

The figure also shows, on the left, three illustrative MIDI-aware
software applications. One is a scoring program, such as Encore,
Finale, or Sibelius. It does for musical scores what a word processor
does for textual documents. It can “play” the score, meaning that a
description of the musical performance implied by the score, in the
form of a MIDI message stream, is sent out the MIDI output port of
the application, perhaps to the internal synthesizer.

Most scoring programs can also accept a MIDI message stream,
typically arriving from an external MIDI device by way of the MIDI
interface adapter, to capture it in score form. (Perhaps the composer
or arranger will use a MIDI keyboard to enter passages of the musical
number into the scoring program, which sure beats entering the notes
one at a time with a mouse!)

The second application is a MIDI editor, such as Cakewalk Home
Studio, Sonar, or Master Tracks Pro. It allows the construction and
modification of a musical performance—with emphasis on its
representation as a MIDI sequence rather than in musical notation on a
score, as in a scoring program. (There is nevertheless a lot of
functional parallelism between these two kinds of applications.) As
with the scoring program, it has both input and output MIDI ports, for
essentially the same reasons.

The third application shown is what we would today call a MIDI player
(although in fact its traditional name is MIDI sequencer). It reads from
a computer file (a standard MIDI file, typically with filetype extension
MID) a definition of a musical performance as a sequence of MIDI
messages, and sends the messages in real time, through its output
port, to (for example) an internal MIDI synthesizer. (Actually, both
scoring programs and MIDI editors, when “playing” musical
performances, are also acting the role of a MIDI sequencer.)

The input and output ports of these applications are all designed to
link with MIDI devices in the computer through their device drivers,
using a particular form of the computer’s device driver protocol. The
operation is directly analogous to a word processing program sending
its output, via the device driver, to a printer, or receiving input, via the
device driver, from the computer keyboard.

5 Which might in fact be part of a keyboard instrument.

MIDI Monitoring in a PC Page 5

“Devices”

Note that in the discussion above we spoke of the entities on the right
as “MIDI devices”, since they are treated by the computer as
“devices”, and distinguished them from the entities on the left, which
we described as “MIDI applications”.

But outside the computer, in the world of the physical/electrical MIDI
interface, we tend to call all the participating entities “MIDI devices”,
even those that are the functional analogs of the “MIDI applications”
inside the computer.

This difference in the scope of the term “MIDI device” between these
two contexts can cause confusion in discussions of MIDI message
flow.

Establishing the connections

Inside our computer, how do we actually control the connection of
outputs to inputs as needed for the desired flow of MIDI messages
between MIDI devices and MIDI applications?

This is always arranged at the application end, whether it is the input
or the output that is there.

Consider the scoring program Encore. If I wish to cause its MIDI
output to go to the input of a certain one of my internal synthesizers, I
open a “MIDI setup” dialog in Encore and open a dropdown menu for
“Output”. That menu will list all the existing MIDI devices (in the
sense discussed above) having inputs. I choose the internal
synthesizer. The result will be that the MIDI message stream emitted
by Encore on its MIDI output will be led by the computer’s operating
system to the input of the device driver for the synthesizer (and
thence to the synthesizer proper).

Similarly, if I want Encore’s MIDI input port to receive the MIDI stream
emitted by the receiving branch of my MIDI interface adapter (having
arrived over a physical/electrical MIDI interface from, for example, a
MIDI keyboard), I open a dropdown menu in Encore for “MIDI Input”.
That menu will list all the existing MIDI devices (in the sense
discussed above) having outputs. I choose the MIDI interface adapter.
The result will be that the MIDI message stream emitted by the
receiving portion of the device driver for the MIDI interface adapter
will be led by the computer’s operating system to the MIDI input port
of Encore.

So in all cases, the selection of the distant entity to which a
connection is made is directed by the application involved, controlled
by settings made on dialogs in that application. The little “knob”

MIDI Monitoring in a PC Page 6

graphics on the ports of the MIDI applications in figure 1 represent
those “device selection” capabilities.

Impermissible connections

Of looming importance to us is the fact that:

• There is no way that an output port of a MIDI-aware application
can be directed to send its MIDI output to the input port of another
application, or vice-versa, nor for an input port of an application to
be directed to “listen to” the output port of another application.
These ports are only capable of linking with MIDI devices (via their
device drivers). When connections are set up for application ports,
ports on other applications do not appear on the selection list.

• There is no way that an output port of a device (that is, of its
device driver) can be directed to send its output into the input port
of another device, or a device input port directed to “listen to” an
output port on another device. Connections with these ports can
only be with application ports (set up at the application).

Thus, connections for the exchange of MIDI messages inside the
computer can only be between an application port and a device port
(and one of those ports must be an output and one an input).

The colored paths on figure 1 demonstrate this limitation.

The gender metaphor

The fact that we can only connect an output port to an input port is
often spoken of as a matter of two distinct genders of the ports.

Similarly, the fact that, inside the computer, we can only interconnect
a port on a device with a port on an application can be thought of as a
second, and wholly separate, gender matter, which we might call
entity gender to distinguish it from port gender matter discussed just
above.

Thus, within the computer, the overall imperative is that a port on an
entity can only be interconnected to a port of the opposite port gender
on an entity of the opposite entity gender.

Note that the matter of entity gender is a creature of the asymmetrical
nature of the device driver-application interface in the computer. It
does not flow from any generalized functional or semantic dichotomy.

Outside the computer, in the world of the physical/electrical MIDI
interface, the concept of port gender applies, but there is no inherent
concept of entity gender. We can interconnect any output port with

MIDI Monitoring in a PC Page 7

any input port, and data can flow.6 Of course, whether or not this will
be a meaningful interchange is another matter altogether.7

CONNECTION OF A MIDI MONITOR

Introduction

The type of MIDI monitor we consider here is a software application.
Its traditional use is to accept a MIDI message stream arriving from
outside the computer, entering through a MIDI interface adapter, and
display it. In this situation, its input port is linked in the now familiar
way with the output port of the adapter, as shown in figure 2. Of
course, the two linked entities here are of opposite entity gender.

Logical
MIDI

interface

MIDI
interface
adapter
("MPU")

External
(physical/
electrical)
MIDI
interface

inR
inDevice

driver

SoundBlaster
sound card

MIDI devices

MIDI monitor
(MIDI Ox,
etc.)

in inDecode and
display

MIDI applications

out

Figure 2. MIDI monitor with “external” message source

But in the case of interest in this article the source of the MIDI stream
to be examined is another MIDI application in the computer, such as a
scoring program. Thus we need the MIDI message stream emitted by
the output port of the scoring program (while “playing” a score) to be
carried to the input port of our MIDI monitor.

The entity gender limitation

As we have recently seen, the output port on the scoring program is
only able to choose from among MIDI devices—not other
applications—as a destination for its output, and the input port of the

6 We can in fact physically connect an output port with another output port, or an
input port with another input port, owing to the nature of MIDI cables. But this will
be futile at all levels: no messages can flow through such a connection.

7 We might, for example, connect an output port delivering a MIDI message stream
describing a musical performance to an input port expecting to receive only MIDI
timing messages. Messages will flow, but the interchange will be semantically futile.
But this is not a result of entity gender conflict, merely of functional incompatibility.

MIDI Monitoring in a PC Page 8

monitor program is only able to choose among MIDI devices—not
other applications—as a source for its input. Thus neither of the ports
of interest is able to choose the other as its correspondent—the
interconnection we need cannot be established using the inherent
capabilities of the entities and the computer.

This limitation is a manifestation of the structure of entity gender
created by the computer’s reliance on the asymmetrical “device
driver” architecture for the interchange of MIDI messages.

Circumventing the gender limitation

In order to circumvent this entity gender limitation, we must introduce
a special software “intermediary”, a device side MIDI loopback driver.
From a software standpoint, this is organized like a bidirectional device
driver, but in fact is not associated with any hardware device. Rather,
it just (in effect) takes any MIDI message directed into its input port
(from the output port of some MIDI application) and sends it out
verbatim over its output port (to the input port of some MIDI
application).

Then, we can establish the needed routing between the MIDI output
of our scoring program and the MIDI input of our MIDI monitor as
shown in figure 3.

Scoring
program
(Encore,
etc.)

Logical
MIDI

interfaceMIDI applications

out

in

MIDI monitor
(MIDI Ox,
etc.)

in

out

in

in

MIDI devices

Decode and
display

Device driver side
MIDI loopback
(e.g., Midi Yoke)

none

in

out

Figure 3. MIDI loopback to monitor

Establishing this routing involves the following:

• On the scoring program, we set its MIDI output selection to the
loopback driver, which will have some easily-recognizable name—in
this case, that name represents the input port of the loopback
driver.

MIDI Monitoring in a PC Page 9

• On the MIDI monitor program, we set its MIDI input selection to

the loopback driver—in this case, the name represents the output
port of the loopback driver.

MIDI Yoke

A handy device-side MIDI loopback driver is MIDI Yoke, published by
Jamie O’Connell, who also publishes the Midi Ox MDI monitor
application. It is available here (free):
http://www.midiox.com

An installation of MIDI Yoke (it needs to be installed just like any other
device driver) actually installs several instances of the driver, each of
which are independent loopback facilities (with distinct names). For
some complicated setups (beyond what we describe here), more than
one loopback driver might be simultaneously needed.

You can choose how many instances are to be installed, up to 16.
Having too many isn’t necessarily harmless, since some MIDI
applications have a limit as to how many MIDI devices they can
enumerate on their “port connection” menus. If you use up the quota
with too many instances of a loopback driver, some other devices
might be invisible and thus inaccessible.

The installation of MIDI Yoke is covered in Appendix A.

But now I can’t hear it

Now that we have redirected the output of Encore away from our
synthesizer and to MIDI Yoke instead, allowing it to ultimately reach
the MIDI Ox Monitor, we no longer hear the performance. But we may
wish to still hear it so we can “follow the music” as we watch the
monitor.

Scoring
program
(Encore,
etc.)

Internal
synthesizer

Logical
MIDI

interfaceApplications

out

Speakers

in

MIDI monitor
(MIDI Ox,
etc.)

Device
driver

out

in out

in

out

out

in

out

in

MIDI devices

Decode and
display

Filter

SoundBlaster
sound card

Device driver side
MIDI loopback
(e.g., Midi Yoke)

none

Figure 4. Complete monitoring setup

MIDI Monitoring in a PC Page 10

Fortunately, MIDI Ox provides an additional feature that we can
employ to overcome this problem. It allows the incoming MIDI stream
to be sent out its MIDI output. A main reason for this is that this
“through” MIDI stream can be filtered and modified in many ways, on
the way to, for example, a synthesizer, as might be useful for special
applications.

But we can just use that path without any such intervention to lead
the MIDI stream, unaltered, to our synthesizer for “audition” purposes.

Figure 4 shows the complete arrangement.

The configuration of MIDI Ox and the reconfiguration of our “source”
application (such as Encore) to provide this arrangement is covered in
Appendix B.

MIDI MESSAGES

Before we continue, I will give a brief review of the basic structure of
a MIDI message so that the material on MIDI message stream
monitoring can be put into context.

MIDI messages describe, in real time, a musical performance, in
note-by-note form.

Each MIDI message consists of one, two or three bytes. Only seven
bits of the bytes actually carry data. The highest order bit is a flag that
allows the receiver to synchronize with and parse the message
stream: it is always “1” for the first byte of a message and “0” for all
later bytes.

The first byte is called the status byte. In channel messages, it
identifies in its three high-order data bits the message type. In effect,
this gives the “verb” of the message: what the message tells the
recipient to do. For each channel message type, there will always be
either one or two data bytes to follow.

In channel messages, the lower-order four bits of the status byte carry
the MIDI channel number, sort of a routing tag for the message. This
tag system essentially creates 16 “virtual channels” (spoken of as
channels 1 through 16, although the encoded values are 0-15)
“through which” messages can distinctly travel.

This “channelization” allows messages to coexist in a single stream
that have up to 16 different “destinations”, either in the sense of one
of several physical devices being fed the same message stream, or
(more commonly) one of several “compartments” of a “multi-tasking”
synthesizer, each acting as one “instrument” in a musical ensemble.

MIDI Monitoring in a PC Page 11

In system messages (for which there is no channel concept), the three
high order data bits are always 111, and the four low order data bits
give the message type. For each system message type, there will be
no, one, or two data bytes.

In messages of either class, the data byte(s) normally each carry a
numerical parameter of the message, which define the details of the
function to be performed (such as “what note is to be sounded” and
“how loud”, or “what should be the overall volume level for the
instrument controlled over this channel”).

For some message types, there are two data bytes that collectively
carry a single 14-bit parameter. (For more on this, see Appendix C.)

As a metaphor, the status byte of a fanciful channel message might
say “jump” and “who should jump” (that is, “people listening to
channel 5 for their instructions”). The two status bytes might say
“how far” and “in what direction”.

USING MIDI-OX

Introduction

Now we are ready to actually use MIDI Ox to observe the MIDI
message stream coming from out source application.

Midi Ox is very rich in features, going far beyond its basic monitoring
function. However, in this article, we will mostly limit ourselves to
that basic function.

Basic display modes

Keeping in mind the “MIDI through” capability we alluded to earlier, it
is not surprising that Midi Ox will allow us to separately monitor
(parse, decode, display) the MIDI stream arriving at its input port and
the MIDI stream being sent out.

The default display is of the output stream. In fact, that display
window is always active (although it can be minimized).

If we want to monitor the input MIDI stream (which is ordinarily
actually our interest in this article), we need to open the input monitor
window. To do that, we select View|Input monitor. A second display
window will then open.

We can then “close” the output monitor window. The actual result is
only that it is minimized, but the minimized window will usually be
hidden behind the other monitor window (Input).

MIDI Monitoring in a PC Page 12

Of course, since we presumably have Midi Ox set to pass all received
MIDI messages to its output verbatim (even though they might not be
directed from there to anyplace), the output monitor display window
will actually show us what we are interested in (most of the time).
Thus we might choose merely to rely on it, and not open the input
monitor window at all. (I recommend not to do so, since some
confusion can arise under certain situations.)

If by any chance we are unable to see the MIDI stream of interest, it
might be because:

• The “through” feature has been disabled, and

• The only visible display window is the Output monitor window.

The easiest way to re-establish the basic through functionality
(without having to learn the rather “rich” port management interface)
is to repeat the configuration procedure in Appendix B.

The monitor display

The monitor display comprises one line for each MIDI message in the
stream, listed in order of their arrival. For each message, we see the
following:

• TIMESTAMP. This is the arrival time of the message, in
milliseconds, on an arbitrary scale (it starts when the application is
started). It appears that the number can run to nine digits (almost a
million seconds, over 11 days), but it restarts if the application is
closed and restarted.

• IN. The device from which the message arrived (through the MIDI
Ox input port)—the proximal source of the message. (The numbers
of the different possible devices are shown on the Options|MIDI
Devices dialog). In the case of the output display, we may see
internally-initiated messages that did not arrive through the input,
and a mnemonic code is used in the IN field to indicate such an
origin.

• PORT. (Output monitoring display only.) The device to which the
message is sent via the MIDI Ox output port—the proximal
destination of the message. Again, the number assignment is
shown on the MIDI Devices dialog. (On the input monitor display,
this field exists for format consistency, but carries just “--“.)

• STATUS. The numeric value of the first byte of the message, the
status byte. Recall that, except for system messages, it indicates
both the type of the message (its “verb”) and the MIDI channel
number, and its value reflects the immutable “1” value of the most

MIDI Monitoring in a PC Page 13

significant bit of a status byte. Both the channel number and the
message type are shown separately in other fields of the display
line. In system messages, the status byte only carries the message
type, and the channel filed shows “--“..

• DATA1 and DATA2. The numeric values of the data byte(s) of the
message (some message types have only one). These carry the
parameters of the message, and their significance of course varies
with the message type. For messages with only a single data byte,
the DATA2 field shows “--“.

For some message types, the two data bytes collectively give a
single 14-bit parameter value. This value is not directly displayed in
the listing. Midi Ox includes a calculator that will determine the
value from the DATA1 and DATA2 byte values (it is called the
“NPRN calculator”.8 In it, the DATA1 and DATA2 values are
entered as “LSB” and “MSB”, respectively (note the “reversed”
order). The calculation can also be easily done manually. The
procedure is given in Appendix C.

• CHAN. This is the channel dictated by the channel tag in the status
byte (for channel messages only). The channels are identified as 1
through 16.

• NOTE. For note on and note off messages, the affected note
(whose “note number” is given by the DATA1 byte) is shown in
enharmonic notation with an octave indicator, such as C# 3.

Note that different schemes of octave notation are used in various
contexts. For example, “middle C” is often designated as C 3, or as
C 5, or as something else. The reference point for the octave
indication in the display in Midi Ox can be changed in the
Options|General dialog.)

A note number of 60 (3Ch) indicates middle C. This equivalence is
not affected by the convention used to “display” the octave of the
note—middle C is the same note (same pitch), and has the same
note number, whether we choose to display it as “C 3” or “C 5”.

For other message types, this field just shows “--“.

• EVENT. This is the type of message, an indication of the action
that it prescribes. Examples are note on, note off, PC (program
change), CC (controller change), and so forth.

8 NPRN stands for non-registered parameter number. It is one of the quantities
whose value is represented in 14 bits (although not from the two data bytes in a
single message—from a data byte in two “paired” messages).

MIDI Monitoring in a PC Page 14

For program change messages, the name of the instrument
(“patch”) implied by the new program number is displayed,
normally based on the General MIDI assignment. The new program
number itself can be read in its coded form as the DATA2 value.
Note that the coded values run from 0 through 127. But the
program numbers are often (but not always) written or displayed in
applications on the basis of 1 through 128.

The display of the patch name can be disabled.

For CC messages (actually a family of message types), the name of
the specific “controller” involved (such as volume) is displayed. It is
designated by the value of DATA1. The parameter for the
prescribed action is carried by the DATA2 value.

The monitor entries are color-coded in terms of message type or type
family. We can choose to have them color coded instead by channel
number.

Capturing the message stream

The message stream appearing at the input to Midi Ox (and/or the one
being sent out the output) will only be captured, parsed, decoded, and
displayed if the “record” function is on, which is indicated by the REC
notation at the bottom of the main window being highlighted. It is
normally on by default. If the record function has somehow been
turned off, click on REC to turn it on.

Clearing the display

Either monitoring display can be cleared by making its window active
and selecting Actions|Clear Monitor (or pressing the “swash X” icon
on the toolbar).

Logging the message stream

The journal of messages we see in the output monitor window can
also be written to a text file for later examination or for sending to a
printer. (We cannot do this for the input monitor journal.)

To enable the logging function, select File|Log. A dialog will open.
Check Enable Logging. The path and filename of the log text file can
be set on this dialog.

When logging is in effect, LOG will be highlighted at the bottom of the
main window. The function, however, cannot be enabled or disabled
by clicking on that indication.

MIDI Monitoring in a PC Page 15

If we wish, the log file can be read (in our system default text editor)
by clicking the View Log button in the log dialog, but the file must
first be closed (by unchecking Enable Logging).

Since it is the output monitor display that is logged, if we want to log
our MIDI input stream, we must be certain that the MIDI Ox “through”
feature is enabled (as discussed earlier) so that all incoming MIDI
messages are sent to the output port (verbatim, if we haven’t
established any “filtering” or “remapping”).

The default format for the log file directly corresponds to the monitor
display screen format. Two other forms are available:

• “MIDI to text”, in which the messages are given in mnemonic form,
sort of a MIDI “assembly language”. This language can be used to
“hand code” a MIDI sequence. The code can be “compiled” to
produce a standard MIDI file.

• A verbatim representation of the MIDI byte stream, with the bytes
shown in hexadecimal format, the messages (two or three bytes)
separated by spaces.

The Keyboard

MIDI Ox allows us to use the computer’s QWERTY9 keyboard to send
MIDI note messages out the MIDI Ox output port (in our setup, to our
internal synthesizer). Thus we can “exercise” our synthesizer for
investigatory work, or play a little concert for visitors without hauling
out our MIDI keyboard.

The bottom row of keys (Z-/) represent the white keys of a piano
keyboard from C2 through E3 (in the notation where middle C is C3).
The keys in the row above (A etc.) are the corresponding black keys
(and of course some are inactive, where there are gaps between the
black keys in a regular piano keyboard layout).

The top row of alpha keys (Q-]) represent the white keys from C3
(middle C) through G4). The keys in the numeric row above are the
corresponding black keys.

The function is polyphonic; that is, two or more keys can sound
simultaneously.

By default, the note messages emitted by this keyboard are tagged for
MIDI channel 1, but this can be changed. They have a default velocity
(“loudness”) parameter of 100, but this can be changed. We can also

9 Ou AZERTY, n’est-ce pas, oder QWERTZ, nicht war?

MIDI Monitoring in a PC Page 16

change the octave range, or set the keyboard so that it can produce
various preset chords.

We can also, by various fancy key manipulations, manually send out
many types of MIDI control messages. The details are beyond the
scope of this article, but are well documented in the extensive Midi Ox
help facility (enter “keyboard” in the help index field and select the top
entry).

To activate this function, select Actions|Keyboard, or click on KYB at
the bottom of the main window. The main MIDI Ox application
window must have the focus for this function to work.

MULTI-CLIENT PORTS ON MIDI YOKE

This matter isn’t pertinent to the specific setup so far described in this
article, but can be of importance when setting up more elaborate
connection schemes among MIDI entities in a PC.

Normally, the ports of the device drivers we have been discussing are
“single client” ports. That means, for example, that if we have set an
input port of a certain MIDI application to “listen to” the output port of
some MIDI device driver, we then cannot have another application
input port also “listen to” that same device driver port. If we try, we
will get an error message (either when we try and establish that
second connection, or when the second application actually attempts
to “open” the device driver port).

Similarly, if we have set an output port of a certain MIDI application to
direct its output to, say, the input port of a device driver, we then
cannot then tell an output port on another application to also direct its
data to that same port.

This is not an absolute limitation of the device driver interface scheme.
That scheme admits of “multi-client” port designs. Rather, it is a
limitation the designers of specific device drivers have adopted to
simplify the driver code. (And in the case of the second example,
allowing two applications to contemporaneously send to the same
device could lead to various semantic complications, a problem that is
mooted if the port will just not allow it.)

However, the input and output ports on an instance of MIDI Yoke are
all of the “three-client” form. That is, we can have up to three MIDI
application input ports set to take their data from the output port of a
single MIDI Yoke instance.

And we could have up to three MIDI application output ports set to
direct their data to the input port of a single MIDI Yoke instance. (In
that case, if more than one application is actually sending MIDI

MIDI Monitoring in a PC Page 17

messages at the same time, MIDI Yoke interleaves the messages into
a single output stream. Whether that would make any sense to the
ultimate recipient of the stream is another matter altogether.)

But that arrangement can be handy when we want to send to a device
from one application for a while, and then from another application,
without having to rearrange the connections.

Scoring
program
(Encore,
etc.)

Logical
MIDI

interfaceMID applications

out

in

MIDI editor
(Cakewalk,
etc.)

out

in

none

MIDI monitor A

inDecode and
display

MIDI monitor B

inDecode and
display

in

out

MIDI devices

MIDI Yoke

Figure 5. Exploitation of multi-client ports

For example, in our situations, we might have both our scoring
program and our MIDI editor send into the same MIDI Yoke instance,
which in turn sent to our MIDI monitor. Then we could send a MIDI
sequence from either application to the monitor, for inspection,
without having to do any “switching”. This might be handy, for
example, to compare MIDI sequences from the two applications.

And of course, we could have two different MIDI monitor programs
take their data from the output port of one MIDI Yoke instance, if we
wanted to use both to inspect the same MIDI message stream
(perhaps they provided complementary analytical capabilities).

Note that the separate “branches” of a given device driver port are not
separately listed in the port selection dialogs of applications. The
operating system protocol takes care of the matter automatically (if
the device drivers have the capability).

Figure 5 shows both these aspects in use.

MIDI Monitoring in a PC Page 18

APPENDIX A

Installation of MIDI Yoke

MIDI Yoke is a quasi device driver for PC computers, providing a
“device-side loopback capability”. This allows us to route MIDI
messages from one MIDI application to another (ordinarily, a MIDI
application can only route to or from a MIDI device in the computer).

Midi Yoke is published by Jamie O’Connell, also the publisher of the
MIDI monitor Midi Ox. The program can be obtained here:

http://www.midiox.com

(Choose Midi Yoke from the navigation panel.)

There are different versions for different vintages of the Windows
operating system., We will discuss here the version suitable for
Windows NT and XP. We have no firm information as to whether it
will work under Windows Vista.

The easiest installation is with the form of the distribution file that
works with Microsoft Installer (MidiYokeSetup.msi). We will describe
this installation process.

After downloading that file to an appropriate directory, in a file
manager or Windows Explorer, right click on the file and choose
Install. Follow the onscreen directions. At one point, you will be
presented with a configuration window. It allows you to choose the
number of instances of the loopback driver that will be installed (the
box is labeled “Number of Ports”), up to 16 (8 is the offered default).
Unless you know that you will need a lot of instances, I suggest you
choose to install two instances.

This window also allows you to vary the strategy the driver will use to
thwart “MIDI feedback”, the recirculation of MIDI messages resulting
from the improvident deployment of MIDI Yoke. Unless you are
familiar with this very esoteric topic, I suggest you leave the default
strategy in place.

Once the installation is completed, then all the MIDI Yoke instances
you have installed will appear in the device lists of the input and
output port MIDI device selection dialogs in all MIDI applications. The
several instances have distinct names, such as (for the input aspects,
as appear on output port device selection dialogs) Out to MIDI Yoke: 1
and Out to MIDI Yoke: 2. (The name preambles are intended to remind
the user, looking at the device list, what kind of connection is being
established. Most device names don’t have a preamble like that.) On

MIDI Monitoring in a PC Page 19

application input port device selection lists, the names of the MIDI
Yoke output aspects are (for example) In from MIDI Yoke: 1 and In
from MIDI Yoke: 2.

If you later wish to change the number of installed instances (or the
feedback avoidance strategy), you will need to access the driver
configuration window, thus:

1. In the Windows Control Panel, select System

2. Select the Hardware tab.

3. Select the Device Manager button.

4. Expand Sound, video and game controllers

5. Right click on Legacy Audio Drivers

6. Select Properties.

7. Select the Properties tab.

8. Expand MIDI Devices and instruments.

9. Select MIDI for MIDI Yoke NT driver.

10. Select the Properties button.

11. Be sure the General tab is selected.

12. Select the Settings button.

13. You now will have the MIDI Yoke configuration window.

14. You can change the number of instances of MIDI yoke to be in
effect (the box is labeled Number of Ports) or the MIDI Feedback
strategy.

15. Exit all the way. The changes will go into effect at the next
Windows restart.

You can see why it is worthwhile to choose the proper number of
instances during initial installation!

MIDI Monitoring in a PC Page 20

APPENDIX B

Configuring Midi Ox

Midi Ox is a MIDI monitor that allows us to intercept the stream of
MIDI messages emitted by a MIDI application, parse and decode it,
and display it on screen (and/or write it to a text file for later
examination of printing). This appendix describes how to configure
Midi Ox for the basic form of this activity. It also describes how to
arrange for the MIDI messages to be properly routed for the activity.

Midi Yoke is published by Jamie O’Connell. The program can be
obtained here:

http://www.midiox.com

Installation is straightforward.

We assume that there is at least one instance of the device-side MIDI
loopback driver, Midi Yoke, installed.

Configuring the source MIDI application

First, we must arrange for the source MIDI application (perhaps a
scoring program, MIDI editor, or MIDI sequencer) to send its MIDI
messages to Midi Yoke rather than (for example) directly to the
internal synthesizer.

1. Open the MIDI Setup (or equivalent) dialog in the application. Look
at the panel for MIDI output. The box will probably show a
destination such as SoundBlaster Deluxe MIDI Synthesizer. Note
what that is (we’ll need it later).

2. Take the dropdown for the box. You should see a list of MIDI
devices with inputs, which should include one or more instances of
MIDI Yoke. Choose one for this project (we will assume it is
Out to Midi Yoke: 1) and select it in the box.

The result is that the MIDI messages from the application will be
directed into the MIDI Yoke loopback driver, from which they will be
available to our MIDI monitor (Midi Ox).

Configuring Midi Ox

1. In MIDI Ox, select Options|MIDI devices. In the MIDI Inputs pane,
select In from MIDI Yoke: 1. Be sure that there are not multiple
selections in effect (normal Windows selection techniques work
here). It is not necessary to “execute” this selection—whatever

MIDI Monitoring in a PC Page 21

selection is in place will come into effect as soon as the dialog is
OKed.

The result will be that the MIDI messages sent by the source
application to MIDI Yoke will now be taken into Midi Ox for
parsing, decoding, and display.

2. In the MIDI Outputs pane, select SoundBlaster Deluxe MIDI
Synthesizer, or whatever device had been the original destination
of the source application.

3. Check Automatically attach Inputs to Outputs during selection.

The result of these two last two steps will be that the MIDI
messages originally sent by the source application, and received
into MIDI Ox, will also be sent out of MIDI Ox to the synthesizer
(verbatim, if we don’t put into effect any “filtering”), so we can
still hear the performance.

4. OK the dialog to put the settings into effect.

5. You will probably want the display of the values in the MIDI
messages to be in decimal (rather than hexadecimal) form. To
arrange for this, select Options|Data display and be sure that
Monitor Input: Hex and Monitor Output: Hex are both unchecked.
If you have to uncheck them, you will have to visit the menu
separately for each of them.

MIDI Monitoring in a PC Page 22

APPENDIX C

Decoding 14-bit MIDI message paramaters

Certain MIDI message types (such as the Pitch Bend message) have a
14-bit parameter value. Seven bits of this value are carried by each of
the two data bytes. Bits 0-6 of the parameter value are carried by bits
0-6 of the first data byte, while bits 7-13 of the parameter value are
carried by bits 0-6 of the second data byte.

Note that in any case, only 7 of the bits of each data byte carry data;
bit 7, the “most significant” bit, is always “0”, a flag indicating that
this byte is not the first byte of a message. Thus, the values of the
data bytes will never be greater than 127 (decimal) or 7F
(hexadecimal).

A 14-bit parameter value can never be greater than 16383 (decimal)
or 3FFF (hexadecimal).

MIDI Ox does not display for us, for such messages, the parameter
value—just the values of the two data bytes. But, from those values,
we can easily determine the parameter value.

Let X represent the value of the first data byte and Y the value of the
second. Then V, the parameter value, is given by:

XYV += 128

Note that this is valid for work either in decimal or hexadecimal
notation. The factor 128 (decimal) is numerically the same in either
case, but of course if we are working in hexadecimal, perhaps using a
hexadecimal calculator, we must enter that constant as 80h.

