
MIDI—The Musical Instrument Digital Interface

Douglas A. Kerr

Issue 7
March 8, 2009

ABSTRACT

The Musical Instrument Digital Interface (MIDI) can link together,
electrically, various entities involved in the generation, storage, or
execution of musical performances. This interface is the centerpiece of
an entire complex paradigm of note-oriented digital representation of
musical performances. This paper reviews the basic concepts of this
interface, of the paradigm it spawned, and of the related matter of the
Standard MIDI File, a format for storing in a computer file the MIDI
instructions for executing a musical performance. It also discusses the
related concepts of MIDI-oriented musical notation software, the MIDI
sequencer, and MIDI interface hardware. The “MIDI language”, and its
repertoire of MIDI messages, is discussed, with full detail, in an
appendix.

INTRODUCTION

The musical instrument digital interface (MIDI) is a standard physical,
electrical, logical, and syntactic interface which, in its most obvious
application, links together a MIDI controller1 and one or more MIDI
sound modules in order to allow the automated performance of music.
It is the centerpiece of an extensive and complex paradigm of
note-oriented digital representation of musical performances.

MIDI keyboard controller

There are two classical units of the MIDI controller category. One is a
MIDI interface2-equipped musical keyboard (meaning just the keyboard
proper, not the entire “instrument” comprising both a keyboard and a
music synthesizer, often nevertheless popularly called a ”keyboard”).

MIDI sequencer

The second classical kind of controller is the MIDI sequencer, an entity
that can automatically emit over a MIDI interface the stream of

1 Careful—the term controller is also used in a wholly different way we will
encounter shortly.

2 Although the last “I” of MIDI stands for “interface”, for syntactic ease we generally
speak, tautologically, of a “MIDI interface”.

MIDI—The Musical Instrument Digital Interface Page 2

instructions for a musical performance (the MIDI sequence) from
stored information. A sequencer may be a dedicated piece of
hardware, typically able to read from floppy disk a file describing the
performance, or it may be implemented by application software
running on a general-purpose computer (PC or Mac, for example)
which is equipped with a MIDI interface adapter.

There are in fact three principal types of entity that precisely meet this
definition, but by industry custom, only one is called a “MIDI
synthesizer”. I’ll discuss this later under “MIDI Software.

MIDI sound module

A MIDI sound module may be an actual musical instrument, equipped
with electrical actuators for “playing” it, or it may be a synthesizer, an
electronic unit capable of making musical sounds, often emulating the
sound quality (timbre3) of one or more traditional instruments, and
likely also having a repertoire of unique timbres not matching those of
traditional instruments.

Although we typically characterize the role of the MIDI interface as
described above, with the “performance” being transmitted from the
controller to the sound module, it may also be used in such settings as
transmitting a performance from a keyboard to a sequencer so the
performance may be stored for later automatic rendition.

CAVEAT

The syntactic realm that revolves around the MIDI interface is
extensive, complex, and rife with peculiarities. Overall, it is well
beyond the scope of this article. Here, I hope to give enough of an
overview to equip the reader to deal with MIDI-oriented matters.

The details given in this article for the most part relate to the “original”
MIDI specification. An updated specification. “MIDI Level 2”, was
introduced in 1999. It makes certain changes which will not be treated
here.

THE PHYSICAL/ELECTRICAL INTERFACE

Introduction

The information that follows is for the original physical/electrical
interface. In modern times, analogous specifications have been
developed for transmitting MIDI message streams over other types of
physical/electrical interface, such as USB, Firewire, and so forth.

3 Pronounced as in French: “tam’-bruh”.

MIDI—The Musical Instrument Digital Interface Page 3

These are beyond the scope of this article. The message structure and
syntactic implications described here do not vary over the different
interfaces.

Basic electrical interface

The MIDI interface is potentially a full-duplex data transfer interface,
but the two directions of transmission (where applicable) are carried
by electrically (and physically) separate circuits. Each “direction” is
carried by a two-conductor unipolar current loop (like a neutral
telegraph loop). The loop current is nominally 5 mA.4 The sending end
is active (i.e., supplies the voltage for the loop current). The sending
circuit is not typically balanced with respect to ground. The receiving
circuit must be floating, and its implementation often involves an
opto-electronic isolator.

The idle condition is “marking” (current flowing), which represents
logical “1”. Current not flowing is the “spacing” condition, which
represents logical “0”.

The physical interface

The standard physical presentation of the MIDI interface is on a 5-pin
(180°) “DIN” connector (identical to that used for personal computer
keyboards a few years ago), with female pins, separate connectors
being provided for inputs and outputs when both are present.
Normally, the implementation is as a “chassis-mounted” jack.

The same pins (pins 4 and 5) are used for the actual data circuit at
both input and output connectors; pin 4 is the positive side. Pin 2 is
grounded at output jacks only (to provide for a shield ground for the
interconnecting cables).

Interconnecting equipment items is done with “MIDI cables”, which
have identical male-pin plugs on both ends. One end is plugged into an
output jack, and the other end into an input jack (ordinarily on another
unit). If bidirectional transmission is involved, two such cables must be
used.

The cable wiring is “pin-to-pin” for pins 4 and 5. Pin 2 connects to the
cable shield at both ends.

The input-output “duality” can make it tricky to label cables in an
installation for identification.

4 The actual current may be as much as 7.5 mA, depending on implementation and
connection details.

MIDI—The Musical Instrument Digital Interface Page 4

Transmission format

Transmission is on an asynchronous (“start-stop”) basis at a rate of
31.25 kilobauds. The idle condition is marking (“1”). The character
(byte) format is one start bit (spacing, or “0”), 8 data bits, and one
stop bit5 (“marking”, or “1”). Of course, if the characters are not being
sent at maximum possible rate, the stop bit of a character will be
prolonged (becoming a period of the “idle” condition) until the next
character commences (as for any asynchronous serial transmission).

The lowest-order data bit is sent first (as for the serial transmission of
ASCII characters).

Message structure

MIDI information is sent in the form of MIDI messages. With the
exception of one specialized message type, MIDI messages consist of
one to three consecutive characters (bytes). The first, called the status
byte, indicates the type of the message (in effect, the message
“verb”) and also (for most messages) the channel number for the
message. The second and third bytes, when present, are data bytes,
and carry the parameter(s) of the message. The number of data bytes
(0-2) is constant for any given message type6 (and thus will be known
as soon as the status byte is interpreted).

The status byte always has a most significant bit value of “1”, while
the data bytes (if present) always have a most significant bit value of
“0”. This allows the receiver to unambiguously synchronize with the
message format. Thus there are actually only seven true data bits in a
byte, and so, in the data bytes, parameters as coded usually have an
available range of 0-127. In the case of two particular message types,
the data bits of the two data bytes together represent a single 14-bit
value.

Further details of message structure and syntax will come later, with
even further detail given in Appendix A.

5 In rigorous terminology, we speak of start and stop elements rather than bits, since
these do not actually carry information. This subtlety is largely ignored in modern
practice, as I did here.

6 Except for that one specialized type, which has a “variable length” structure.

MIDI—The Musical Instrument Digital Interface Page 5

OPERATIONAL CONCEPTS

MIDI channels

Most MIDI messages are tagged with a channel number, which can
range from 1 to 16 (in “human” notation; the actual coding has a
range of 0-15, carried in four bits). This allows several separate
streams of MIDI messages to be carried over a single electrical
interface, essentially traveling over “virtual channels”. This can serve
at least two purposes. Firstly, it allows several physically or logically
distinct MIDI devices to operate on a single electrical interface path
(usually with a “daisy chain” arrangement), eliminating the need for
multiple output ports on the MIDI controller.

Secondly, many MIDI sound modules are able to emulate, at the same
time, multiple musical instruments with different timbres. The channel
tag system allows the note messages destined for these different
virtual “instruments”, traveling across the same interface, to be
distinguished at their destinations.

Polyphony and multitimbrality

A musical instrument (including a MIDI sound module) which can only
sound one note at a time (as for an actual trumpet) is said to be
monophonic. An instrument which can sound more than one note at a
time (such as an actual piano) is said to be polyphonic, or to have the
property of polyphony.

A sound module which can, contemporaneously, act as several
different instruments, each with a different timbre, is said to be
multitimbral, or to have the property of multitimbrality.

Programs, patches, and instruments

As mentioned above, many synthesizers may emulate the timbres of
different traditional instruments, as well as, typically, some timbres
unique to ”electronic music”.

The MIDI controller may command the sound module to put into effect
a particular timbre from its repertoire with a program change message.

The actual provisions in the sound module which cause the different
timbres to be sounded are often called patches. This term goes back
to the days of analog synthesizers, in which a particular timbre was
set up by making connections among various oscillators, modulators,
and filters using small plug-in cords (called “patch cords” by reference
to the cords used to interconnect audio apparatus) on a plugboard. A
particular arrangement (resulting in a particular timbre) therefore came
to be known as a “patch”, a term which still is used in the equivalent
sense for digital synthesizers.

MIDI—The Musical Instrument Digital Interface Page 6

A program change message with a certain program number will cause
the sound module (synthesizer) to put into effect a certain patch. But
the assignment of program numbers to particular patches may be
arbitrary in any particular device.

The different patches a synthesizer can adopt are often spoken of as
“instruments”.7

A multitimbral synthesizer can adopt, contemporaneously, more than
one timbre, and thus can play several “parts” of a musical
arrangement at the same time. The different aspects of the
synthesizer that do so are in fact often spoken of as its different
“parts”.

In transmitting an actual musical performance over a MIDI interface,
the messages destined for the different “parts” are sent on different
MIDI channels (that is, tagged with different channel numbers),
generally assigned arbitrarily. At the beginning of the performance,
individual program change messages are issued on each channel to
designate the timbre of the “instrument” which is to be utilized for
playing the notes subsequently received on that channel.

The General MIDI Specification

Traditionally, the repertoire of available timbres (“patches”) in a
synthesizer, and the program numbers (in the program change
message) which put each into effect, were proprietary to the
synthesizer manufacturer. There is, however, an industry standard
repertoire of named timbres (“instruments”) with associated program
numbers, known as the “General MIDI Specification”. Any synthesizer
which follows, or can be configured to follow, this specification can
play any MIDI performance predicated on the General MIDI (GM)
context with the proper timbres (however it is best able to do so).

Comparable standard arrangements developed by specific synthesizer
manufacturer are also used. An important one is the Roland “General
Standard”, or GS, which is really an extension and elaboration of the
General MIDI standard. Another is the Yamaha “XG” standard.

An industry standard extension and expansion of the MIDI/General
MIDI standards, “MIDI Level 2”, was introduced in 1999.

7 But sometimes an entire synthesizer is also referred to as an “instrument”.

MIDI—The Musical Instrument Digital Interface Page 7

Percussion

With respect to their handling in a MIDI context, percussion
instruments can be divided into two categories. Chromatic (or melodic)
percussion instruments sound notes of a scale, with distinct pitches,
as in the case of a marimba, glockenspiel, or a set of tympani (of
course, an actual suite of tympani can only sound certain notes at a
given time). These are treated under MIDI just as any other
instrument. The General MIDI Specification instrument repertoire
includes a number of chromatic percussion instruments.

Non-chromatic percussion instruments do not sound various notes,
and usually do not have a pitch in the usual sense. Typical examples
are snare drum, bass (kick) drum, triangle, cymbal(s) of some
particular flavor, wood block, etc. Thus, to tie up an entire “program”
number and a separate MIDI channel for each non-chromatic
percussion instrument would be a waste of code capabilities.

Instead, a whole collection of non-chromatic percussion instruments
are gathered together to form a single MIDI “instrument”. Different
note numbers cause the different percussion instruments to be
sounded. For example, note 38 might cause the acoustic snare drum
to strike, while 36 might make the bass drum strike, and 49 the crash
cymbal.

A particular collection of synthesized non-chromatic MIDI percussion
instruments (or “traps” as they are often called), treated as one MIDI
instrument, is often called a “drum kit”.

As with the regular instrument patches, the traps which are included
in the drum kit and the notes assigned to each had traditionally
followed a manufacturer’s proprietary arrangement. The General MIDI
Specification, however, prescribes a standard drum kit with a standard
assignment of notes to the different traps.

Further, the General MIDI Specification provides that MIDI channel 10
should be used for messages to the drum kit. (MIDI Level 2 provides
than channel 11 should be used for a second drum kit to expand the
number of traps accommodated.)

MIDI MESSAGES

In this section we discuss some important MIDI messages types, those
most needed to “make music”.

MIDI—The Musical Instrument Digital Interface Page 8

Note messages

MIDI note messages tell the sound module to begin sounding a
particular note, or to stop sounding it. These messages are sent in real
time, and ideally are executed immediately by the sound module.

The Note On message carries a channel tag and two parameters (in its
two data bytes):

• The MIDI note number. This identifies the note as an integer
indicating its pitch in the traditional (Western) musical scale; each
successive higher integer represents a pitch a half-step higher (that
is, corresponding to successive keys on a piano keyboard, both
white and black keys being counted). This value is in the first data
byte of the message.

Note number value 60 represents middle C (“C5” 8). The note
transmitted is always the note to be sounded, even in the case of
“transposing” instruments. 9

• The note velocity. On a piano, the velocity with which a key is
“struck” affects the loudness (and to some extent, the timbre,
especially at the beginning) of the note sounded. Thus, for a piano
“patch”, the velocity parameter of a note message affects the
volume with which the note is sounded and the timbre as well.
This value is in the second data byte of the message.

For most instruments other than the piano, the velocity parameter
still signifies the loudness at which the note should be sounded
(and again, perhaps the subtleties of its timbre, if that would
change as the prototype instrument were played louder or softer.)
However, in the case of a note message intended for a synthesizer
emulating a pipe organ, the velocity parameter is usually ignored,
reflecting that the loudness of individual notes played on a pipe
organ cannot ordinarily be varied from the keyboard.

The definition of the MIDI language provides a distinct Note Off
message (a different message type), used to command that the
sounding of a note cease. This message contains the channel tag and

8 This notation means “C in octave 5”. Unfortunately, in some contexts middle C is
designated as “C3” or “C4”. These all refer to the same note, and its MIDI note
number is still 60.

9 The note shown on a trumpet score as “middle C” when played by a “B ” trumpet
has the actual pitch A# (B). To make that note sound on a synthesizer, regardless
of the patch in effect, we must send a message with note number 58 (B). Scoring
programs will generally let us make this adjustment when the score is “played”.

MIDI—The Musical Instrument Digital Interface Page 9

the note number (which identifies the note, now sounding, that is to
be stopped); the note velocity parameter is usually a dummy (although
in theory it can indicate different “speeds of release” of the piano
key). It is common to use an arbitrary value of 64 for this dummy
parameter if it has no actual significance.

However, modern practice sometimes handles the Note Off operation
in a different way altogether. The Note On message is used, but with
a velocity parameter of zero. This is taken to mean “Note Off”. This
peculiar convention is intended to facilitate the employment of a type
of “message shorthand” called the running status convention
(discussed shortly).

Program change message

The MIDI controller may command the sound module to put into effect
a particular “patch” from its repertoire with a program change
message. This carries a parameter with value from 0 to 127, which is
usually deemed to represent a program number from 1-128.10 The
patch implied by the specified program number will be applicable (until
further change) to all note messages having the same channel tag as
that of the program change message (which we can think of as
describing notes to be played by a particular “instrument”, a particular
“part” of the synthesizer). As mentioned above, the association of
program numbers with patches may be arbitrary, or may follow the
General MIDI standard mentioned earlier.

Control change messages

Although the entire device which emits a sequence of MIDI messages
is called, generically, a MIDI controller, the term controller has another
totally different meaning. For example, the sustain pedal on a piano is
considered a controller, or a master volume control for the instrument
being played.

Control change messages (often called controller messages) reflect the
states of these controllers. One subclass (a switch controller message)
is used for controllers which only have two states (such as Sustain
Pedal: on/off). They carry a Boolean (two-state) parameter. Another
subclass is the continuous controller message, which has a numeric
parameter (such as channel master volume level).11

10 But sometimes the program numbers are considered to run from 0-127, a source
of much confusion!

11 The term continuous is not rigorously accurate, in that the value is not truly
continuous but discrete, usually quantized to no more than either 128 or 16,384
possible values. The intended distinction in the term is with a two-state controller.

MIDI—The Musical Instrument Digital Interface Page 10

The “pitch bend” wheel on many electronic keyboards, which allows
the performer to slide the pitch of the notes being played up or down
in pitch, is in fact a type of continuous controller. Its setting, however,
is not sent in a specific continuous controller message as such, but
rather in a unique pitch wheel message, with 16,384 distinct values
(its two data bytes collectively give a 14-bit parameter).

Other messages

There are many other MIDI messages. Most of the MIDI messages are
listed in Appendix A (and the ones not listed individually are identified
by class), which also gives further detail that we see just above as to
their format, coding, and syntax.

Running status

Often we will need to send a long sequence of messages with the
same “verb” (status byte value). To save transmission time, the status
byte can be omitted from all such messages after the first. The
receiver is alerted to the use of this by the fact that, after what should
be the end of the first message (its length is indicated by the message
type, as given in the status byte), another data byte is found
(recognized by the value of its most-significant bit). Since there will be
the same number of data bytes in all messages of the “series” (they all
have the same message type, given by the status byte of the first
message), the data bytes of the subsequent messages can readily be
“parsed out” and interpreted.

This technique is called running status, and can be thought of as a
type of transmission shorthand. Its advantage is in reducing the
number of bytes to be sent for a musical sequence. It is only workable
for sequences of messages pertaining to a single channel, since the
channel number is embedded in the status byte.

We can exploit this shorthand for a sequence of note messages by
following the convention in which the degenerate case of the Note On
message (with velocity=0) is used to end a note rather than the
distinct Note Off message. Thus, both Note On messages and this
special form of Note Off message have the same status byte (“Note
On”), and so the whole sequence can be handled under the running
status protocol. In fact, it is for the note messages that the
transmission economy of the running status convention is most
potentially profitable, since these normally constitute the majority of
the messages.

MIDI—The Musical Instrument Digital Interface Page 11

Bank selection

The basic concept of program change allows us to, at any given time,
select among up to 128 different patches to be used to render the
notes that will arrive over a certain MIDI channel.

As the capability (and sophistication of use) of synthesizers advanced,
it was found that this range was insufficient for the enlarged repertoire
of patches we might wish to implement in a synthesizer.

Thus, to extend the patch selection “code space”, the concept of bank
selection was introduced. Basically, this provided a “paged catalog” of
patches. The “page” to be used (called a bank) was indicated by use
of a Bank Select message (one of the group of “control change
messages, the one identified as “CC0”). It could distinguish among up
to 128 banks. That having been done, the normal Program Change
message would subsequently designate the particular patch (from up
to 128) in that bank.

While it might seem that this gigantic range of bank/program
identifiers (each potentially indicating a particular patch)—16,384
altogether—should more than well satisfy emerging synthesizer
capabilities, the range was often used in an inefficient way.

For example, a synthesizer manufacturer might have program 1 on
bank “0” (the “default bank”) indicate the patch for a “regular” grand
piano. Program 1 on bank 1 might indicate the patch for “grand
piano—variant 2”, and program 1 on bank 2 “grand piano—variant 3”.

This gave us a “very sparse” code space. If the most variants we had
for any kind of instrument was 7, and only one instrument had that
many variants, then only 7 banks would actually ever be used, and the
last of them would only have one patch assigned (program 1: “grand
piano—variant 7”).

So there was agitation for an even larger repertoire—for the ability to
select from more than 128 banks.

This was achieved by increasing the size of the parameter that
indicated the bank from 7 bits to 14 bits. This was done by defining
another control change family message (CC32) to contribute 7 more
bits to the bank identity (7 bits being delivered by CC0).

Now, these two CC messages (CC0 and CC32) were redesignated
“bank select MSB” and “bank select LSB” respectively (“most
significant byte” and “least significant byte”). These terms are, of
course, technical misnomers, since each message does not contribute
8 bits (a byte, or “octet”) to the overall bank number but only 7 bits (a
“septet”). Thus, “most significant septet” and “least significant

MIDI—The Musical Instrument Digital Interface Page 12

septet” would have been more apt, but in a field where the workers
are mostly musicians, you can imagine the confusion that could cause!

Now, why were the “most” and “least” assignments made this way?
Well, if we start with a coding system with a certain range, and desire
to increase the range by adding more digits, there are two possible
outlooks. If we want the number to actually cover a greater range, we
add digits on the most significant end (as if we increase the “house
number” field in a data base from four decimal numbers to five, to
accommodate house numbers like “16606”).

If instead, we are interested in a greater “refinement” of the
indication, we add digits on the least significant end (as when we
increase the “inventory value” field in a system from seven decimal
digits to nine so we can show values to the nearest cent).

Now one could argue, tortuously, that in seeking to increase the
number of banks that we can distinguish from 128 to 16,384 we
were looking for “greater refinement”. But it is most reasonable to say
that we just want “more numbers”. (After all, a bank number isn’t a
quantity like temperature—it is a “counting number”).

This, it would have seemed sensible to consider that the added bank
selection message (CC32) would add higher-order bits to the 7-bit
number carried by the original message, CC0.

But when this was being done, the range of almost all the continuous
controller “commands” was also increased from 7 to 14 bits by the
assignment of complementary messages, and in almost all cases other
than bank selection, the objective was to increase the “fineness” of
control. Thus, in all those other cases, it was most sensible to
consider the added message as contributing lower, not higher, order
bits. For what some people thought was consistency, this outlook was
carried to the bank selection message pair.

Accordingly, CC0 (the original message) became “bank selection
MSB” and CC32 (the supplementary message) became “bank selection
LSB”.

Now, not all synthesizer manufacturers actually implemented the
potential for such a gigantic bank repertoire. And thus some of their
machines would only respond to one of the bank select messages
(which would allow selection of up to 128 banks—quite enough for
these machines).

But which one? Some manufacturers said, “Well, if we are not going
to need the entire range, and thus will not need the entire 14-bit

MIDI—The Musical Instrument Digital Interface Page 13

number, only the least significant 7 bits”, so their machines respond to
CC32.

Other manufacturers (notably Roland) in effect said, “before we had
CC32, there was only CC0, and so of course that is the most basic
part of the number (in effect, declaring the bits of CC0 to be the ‘least
significant’, notwithstanding the designation in the specification), and
having these limited machines respond to that message would give the
greatest compatibility with existing practice”. Thus they made their
basic machines respond only to CC0.

The notation program Encore (in versions prior to version 5) only
allows the user to arrange to have one bank select message sent out,
with its value chosen by a 0-127 setting in a dialog. But, to deal with
the situation described above, one can check a box marked “Roland
GS”, which makes the message being sent CC0 rather than CC32.12

THE MIDI FILE FORMAT

Introduction

An entire musical performance, intended for transmission over a MIDI
interface to one or more MIDI sound modules, may be stored as a
computer data file in what is known as the MIDI file format (MFF) or
standard MIDI file format (SMF). These files today usually have
filetype extension .MID.

Typically, a MIDI sequencer will read the MIDI file and, from it,
generate in real time a sequence of MIDI messages that will cause a
synthesizer to render the musical performance described by the file.
The entire performance may be spoken of as a MIDI sequence.

MIDI events

The most common entities stored in a .MID file are called MIDI events,
and correspond to MIDI messages. The most widely used is the note
event. This contains the same parameters as the MIDI Note On or
Note Off message (message type, channel number, note number, and
note velocity).

For each event (of whatever type), the record also includes a time
parameter (“delta time”), which gives the time at which the event is to
take place (that is, the time the event message is to be sent over the
interface), measured from the instant of the previous event. The time
is commonly given in MIDI ticks, a certain fraction of a quarter note

12 As of Version 5, Encore allows the user to set both the “MSB” and “LSB” values
for bank selection, and both messages are sent out when appropriate.

MIDI—The Musical Instrument Digital Interface Page 14

(the particular fraction being declared at the beginning of the file).13
Thus, the actual interpretation of the delta time parameters at the time
of performance, as “real time” intervals, is dependent on the tempo in
force at the time (typically set by the “operator” on the sequencer’s
control panel, but perhaps directed by the file).

Tracks

In one style of standard MIDI file (“Format 1”) events in a MIDI file are
gathered together into groupings called tracks. Typically, the note
events in a track represent a particular instrument’s part of a musical
arrangement and/or a particular staff on the musical score for the
arrangement.

The track to which a particular note event is assigned has no effect on
the transmitted MIDI message (and does not show up in the note
messages). The assignment of note events in the MIDI file to different
tracks is solely for convenience in managing the musical
“arrangement” in such contexts as the use of “musical notation” or
“MIDI sequencer” software (which we will review later).

Of course, if the notes in different tracks are intended for physically
different sound modules, or for different instruments being
implemented by a module, their MIDI note messages must in fact carry
distinct channel tags. Thus, often there will be a one-to-one
correspondence in the MIDI file between the track assignment of an
note event and the assigned channel number. But notes assigned to
different tracks (such as two tracks associated with the treble and
bass staves of the piano part) may result in MIDI note messages with
the same channel number if they are to be played on the same
“instrument” (as is usually the case for the piano part).

Interestingly, in the Standard MIDI File format, all the events assigned
to a single track are recorded sequentially, followed by all the events
in the next track, and so forth. This means that a sequencer, preparing
to emit the sequence described by the file, must read into memory the
entire file, and then “collate” the different events, after they have
acquired channel tags,14 in time order.

13 This scheme, which describes time in terms of a note value, is called metrical
time. An alternative uses “clock time”, defined in a specialized system used in
connection with motion picture and TV timing, called the SMPTE time code system.

14 The user may set the channel tag to be used for the notes in each track on the
sequencer controls, or that decision may have been made earlier, and the channel to
be used will have been recorded in the track information (see the discussion under
meta-events, just below). Thee is in general no opportunity to have different notes
that are part of the same track emitted with different channel tags.

MIDI—The Musical Instrument Digital Interface Page 15

Meta-events

The MIDI file may also contain meta-events, which do not cause the
emission of MIDI messages. Rather, these are directions to the
sequencer that will be emitting a MIDI sequence. Among the types of
meta-events are:

• Instructions as to what tempo to follow when emitting the MIDI
sequence.

• Instructions as to what MIDI channel tag should be applied to the
note events from each track.

• Lyric meta-events, which record “lyric particles” (typically,
one-syllable words or individual syllables of multi-syllable words).

MIDI SOFTWARE

Three types of software packages for the PC are most directly
pertinent to our interest in MIDI, music notation software, MIDI
sequencer software, and MIDI player software. As will become
apparent, there may be considerable overlap of their functions.

Music notation software

Music notation software (sometimes called “scoring software”, or a
“scorewriter”) basically does for musical scores what word processors
do for mostly-textual documents and what CAD programs do for
engineering drawings.

Modern programs of this genre allow the preparation of music scores
(“sheet music”) following the full range of musical notation. They
typically include provisions for showing notes and rests of different
value, key signatures, time signatures, tempo changes, dynamic
markings, repeat notation, lyrics (words), titles, copyright notices, and
the like.15

In addition, most notation programs maintain in memory a data set,
conceptually like a MIDI file, from which a MIDI sequence describing a
“performance” of the score can be generated and directed through a
MIDI interface to a MIDI sound module, thus rendering the music
represented by the score. These programs usually can also, on
command, generate a MIDI file carrying this performance.

15 This office uses Encore by GVox

MIDI—The Musical Instrument Digital Interface Page 16

For both of these operations, the channel number and patch (in terms
of a program number) for each staff of the score may be set by the
user.

The score may be “composed” with a number of techniques. The
individual notes and rests may be entered “on the score” with a
mouse. These elements may also be entered by manipulation of the
QWERTY keyboard.

Additionally, an actual MIDI-oriented keyboard, connected to the
computer through a MIDI interface adapter, may be used to send into
an input port of the notation software. The notes “received” will be
deposited on the score.

Many of these notation programs are also able to import a MIDI file
and, from its contents, deduce the nature of the score which might
have directed its generation, and display this score on the screen.

MIDI sequencer software

A MIDI sequencer, like a notation program, allows us to compose or
modify a note-oriented musical performance but with a paradigm that
emphasizes the representation of the performance as MIDI events
rather than as notes on a score (as in a notation program).16

Many MIDI sequencers can display the stored performance in several
ways. One way is to deduce (from the defining sequence of MIDI
events) the score which would have originally described the
performance and display it. Another common mode is the piano roll
display, which has a horizontal “track” for each note value, with dark
bands showing when that note is sounding. This is especially useful
for the many composers and performers who do not read nor write
regular music notation, or to allow direct visualization of subtleties of
note timing.

Another common display is the event list. This is sort of like an
assembly language source listing. Each MIDI event is listed, with all its
parameters. This is the most direct reflection of the actual
performance as stored in the sequencer. In most cases, the sounding
of a note is listed as a single event (even though it is executed by two
messages, Note On and Note Off), with its duration indicated as
though it were a parameter of the event.

Often, the events in the event list may be edited directly. Thus, a
particular note, shown on the score as an eighth note, can be made

16 This office uses Cakewalk Home Studio by Twelve Tone Systems

MIDI—The Musical Instrument Digital Interface Page 17

just a little longer (as a human performer might do to achieve a certain
rhythmic effect), or may be given a different velocity parameter so the
single note is a little louder than its neighbors.

Similarly, in many programs, the note values seen in the piano roll
view may be changed in starting and ending times with the mouse.

Changes entered on one view are then reflected on the other views.

Although as mentioned, many sequencer programs can display a
performance in conventional score form, they typically do not have the
range of features offered by notation programs for flexibly controlling
the format and appearance of the score and the various collateral
notations used on a typical published score.

MIDI player software

A MIDI player is an entity that takes a stored musical performance and
emits a sequence of MIDI messages (perhaps to a synthesizer) that
will cause the performance to be executed.

And of course, both notation software and MIDI sequencers perform
the MIDI player function when “playing” the performance.

MIDI sequencer—the broader meaning

Note that all three of the program types described above seem to meet
the definition we saw much earlier of a MIDI sequencer, yet only one
is, by custom, usually called that.17 Notwithstanding that custom, in
this article I will use “MIDI sequencer” to mean any entity that can
emit a MIDI sequence from a stored representation. (Otherwise, I
would have to invent a new word for that—perhaps “MIDI sequence
emitter”—and wouldn’t that be silly).

COMPUTER HARDWARE

The sound board

MIDI interface capability for a modern PC is usually implemented by a
separate sound board or an equivalent functionality on the computer’s
mother board itself. This typically combines a number of
functionalities, including:

a) An encoder-decoder (codec) for recording and reproducing sounds
in waveform-coded digital form. These are often found stored in

17 Defenders of that custom generally say (a) it isn’t really a sequencer unless the
user can compose the sequence in it, and (b) composing a sequence by working in a
score paradigm workspace doesn’t count, as it isn’t MIDI-enough.

MIDI—The Musical Instrument Digital Interface Page 18

WAV files. The encoding and decoding is typically by way of the
pulse code modulation (PCM) technique, similar to the way speech
is encoded for transmission and switching in the telephone
network.

b) One or two polyphonic, multitimbral synthesizers. Two types have
been used. The earlier type uses a synthesis technique called FM
synthesis, which involves the frequency modulation of one audio
frequency sine wave by another, allowing the creation of a wide
range of waveforms (and thus timbres). The more modern
synthesizer type utilizes wavetable synthesis or a related
technique. Here, actual specimens of the sound of the instrument
being emulated are stored in PCM form in the synthesizer. These
waveform specimens are then scaled in frequency for the note
being requested. The result is extremely realistic simulation of
traditional instrument timbres.18 These synthesizers are driven by
MIDI message streams.

c) An external MIDI interface adapter. This provides for the
connection of the computer to traditional, physical MIDI devices
such as self-contained synthesizers, physical instruments arranged
to be electrically “played”, or MIDI keyboards. In most cases, the
sound board itself (or the mother board equivalent) does not
contain the full electrics for the MIDI interface. Instead, the MIDI
message streams, in standard MIDI logical format, travel through
the connector (not a standard MIDI connector) as TTL-level
electrical signals. To convert these to the unipolar current loop
format of the MIDI interface proper, an external adapter is needed.
This is often built into a “MIDI interface adapter cable” provided by
the board manufacturer (or others). It’s done this way so that,
considering only a small fraction of sound board users will actually
use the external MIDI interface, the cost of the board itself can be
reduced, as the loop sending and receiving circuitry itself involves
special discrete analog components.

A popular family of sound boards, which have set de facto standards
for the internal interface with the music application software, is the
Sound Blaster series, made by Creative Labs, Inc.

18 Timbre involves more than just waveform. The attack and decay characteristics of
the notes also figure into timbre. Both “FM” and “wavetable” synthesizer
approaches provide for specific attack and decay characteristics for the individual
“patches”.

MIDI—The Musical Instrument Digital Interface Page 19

What is “MPU-401”

The earliest commonly-used external MIDI interface adapter for the PC
was the Roland MPU-401 (“MIDI processing unit”), packaged in the
form of an ISA-bus expansion board. This unit set de facto standards
for the internal “logical” interface between the music application
software and the MIDI interface port itself.

As a result, when we select the destination for the output from a
music notation package or MIDI sequencer, we may find a choice
identified as, or making reference to, “MPU-401”. This merely means
the external MIDI interface adapter unit.

The logical interface

MIDI entities inside a computer are not tied together over the
traditional MIDI physical/electric interface, but rather over a “logical
MIDI interface, which is a particular form on the interface used inside
the computer between applications and I/O devices. Such entities as
the synthesizer and external MIDI interface adapter portions of a
sound board are provided with device drivers. Applications such as
scoring software, MIDI sequencers, and MIDI players then link to these
devices in much the same way that a word processor would link to a
printer through its device driver.

A corollary of the use of the “device driver” interface as the basis for
this logical interface is that the interconnected entities are cast into
two “genders”, those that are like I/O devices and those that are
applications. We cannot, using the normal computer capabilities,
arrange for the travel of MIDI messages between two entities of the
same gender. Thus there is no direct way to arrange for the stream of
MIDI messages emitted by, say, a scoring program as it “plays” the
score, to be directed into the receiving port of a MIDI sequencer.

There are available special software accessories that can serve to
overcome this limitation of the “MIDI plumbing” in our computers.
Discussion of these is beyond the scope of this article.

MULTI-SEQUENCER PERFORMANCES

For various reasons, the resources used to produce a musical
performance may be under the control of more than one sequencer.
An important example is the inclusion of a “drum machine”, a highly
specialized sequencer closely coupled to a synthesizer, devoted to
percussion parts. The entire suite of percussion parts is stored in the
drum machine sequencer, while another sequencer has all the other
parts of the performance.

MIDI—The Musical Instrument Digital Interface Page 20

Just as with separate human performers, it is necessary to properly
synchronize the operation of multiple sequencers. One sequencer
(typically the one managing the non-percussion parts) will play the role
of “conductor”. It will instruct the subordinate sequencers when to
start and stop, indicate from which point in the score they should
start, and provide a “beat” to keep the process moving forward in
synchronism.

Administering this modality is the function of a special set of MIDI
messages, one of which is a MIDI System Common Message and the
others of which are MIDI Real Time messages The important ones are:

• MIDI Sync (Real Time)—this message is sent at regular intervals (in
terms related to “beats”, not clock time). Subordinate sequencers
pace their output based on this received beat stream.

• MIDI Start (Real Time)—this message tells the subordinate
sequencer(s) to commence play (from the beginning of the score)
upon the arrival of the next MIDI Clock message.

• MIDI Stop (Real Time)—this message tells the subordinate
sequencer(s) to commence play (from the beginning of the score)
upon the arrival of the next MIDI Sync message. When play stops,
a song position pointer in the subordinate synthesizer is set to the
next clock position after the last clock position played, in
anticipation of a possible restart with the MIDI Continue message
(see next).

• MIDI Continue (Real Time)—this message tells the subordinate
sequencer(s) to commence play (from the point indicated by its
song position pointer) upon the arrival of the next MIDI Clock
message.

• MIDI Song Position Pointer (System Common)—this message
forces the song position pointer of the subordinate sequencer to
the value carried by the parameter of the message, in anticipation
of start of play from that point by way of a MIDI Continue
message.

The MIDI Real Time messages have no parameter. The MIDI Song
Position Pointer message carries a 14-bit parameter.

KARAOKE WORK

MIDI—The Musical Instrument Digital Interface Page 21

Karaoke19 refers to an entertainment, popular in bars and private
parties, in which a song is played from a recording while the lyrics
appear on a screen, usually with a prompt (such as the “bouncing ball”
prompt that was used decades ago for a similar entertainment in
motion picture theaters). The revelers show their vocal skills in this
context.

It is common for these songs to be recorded as Standard MIDI Files,
sometimes with some special wrinkles.

There are two conventions for embedding the words in the file. In one,
the MIDI Lyrics meta-event is used (essentially as originally intended).
In other cases, the MIDI Text meta-event is used. This provides for the
embedment of text for various reasons (not originally intended to be
for lyrics to the musical song), and has been hijacked here for lyrics
use. (This may have been precipitated by some patent issue.)

There are many nice MIDI players that have a Karaoke feature, often
allowing the onscreen display of lyrics recorded either as MIDI Lyrics
meta-events or as MIDI Text meta-events. They are often used in
contexts that are socially different from the Karaoke context, such as
providing for church choristers to learn their parts of hymns.

In connection with the use of the MIDI Lyrics meta-event in a Karaoke
context, the convention arose that a Lyrics meta-event at “time zero”
would be used to carry identifying information about the file, not the
first lyric particle, and thus should not be displayed on-screen.

Workers planning to use the MIDI Text meta-event for Karaoke, choir
practice, or whatever, need make the first Lyric meta-event, if
associated with a note at “time zero” (typically shown in MIDI time
notation as 1:01:000—“first measure, first beat plus 0 ticks”) have a
time tag of 1:01:001.

Sometimes, Standard MIDI files set up for Karaoke work are given the
.KAR filetype extension.

CONCLUSION

The MIDI interface and its related protocols, file formats, and software
packages have brought to composer and performer, musician and
programmer, amateur and professional, powerful tools to greatly
enhance their productivity in utilizing, improving, and enjoying their
musical talents and inclinations.

19 The word comes from a Japanese phrase meaning, roughly, “empty orchestra”.

MIDI—The Musical Instrument Digital Interface Page 22

ACKNOWLEDGEMENTS

Thanks to the many authors who have gathered together and sorted
out in other publications much of the minutiae of the MIDI interface
and language, from which has come much of my own understanding
of the topic.

Thanks to my bride, Carla Red Fox, for her insightful copy editing of
this rather tedious manuscript. Her Cherokee name might almost
better be Carla Red Pencil, as she has counted many coup with that
stick.

MIDI—The Musical Instrument Digital Interface Page 23

APPENDIX B

MIDI MESSAGES IN DETAIL

INTRODUCTION

The MIDI language is defined in terms of MIDI messages, which are
organized in a taxonomy of classes.

In this appendix, we:

• Summarize the taxonomy of MIDI messages

• Review the basic of MIDI message structure and the notation we will
use to describe message details

• List almost all MIDI messages with details of their format, coding,
and syntax.

Keep in mind that not all MIDI-oriented sound modules (e.g.,
synthesizers) will have all the capabilities supported by the rich
repertoire of MIDI messages, and accordingly may not respond to all
message types (usually, by a long shot).

MESSAGE TAXONOMY

The range of MIDI messages is divided into five classes.

Channel voice messages

These all carry a channel tag. They include these types and type
families (among others):

• Note messages. These start and stop the sounding of notes.

• Program change message. This advises the synthesizer (or other
sound module) which “patch” (“instrument sound) to use to render
the notes controlled by note messages on the channel over which
this message arrives.

• Control change messages. This is actually a familiy of many
messages, each of which controls some aspect of the behavior of
the synthesizer, with respect to notes sounded by note messages on
the channel over which the control change message arrives. An
illustrative example is the control of volume for all such notes, or the
invocation of the piano “sustain pedal”.

There are other types in this class.

MIDI—The Musical Instrument Digital Interface Page 24

Channel mode messages

This class has a misleading name. These are “global” messages that
affect the behavior of a synthesizer or other sound module with
respect to notes arriving over any channel.

Nevertheless, these messages have a channel tag. This is to cater for
the possibility of more than one sound module “riding” the same
message stream. Each of those modules has a certain channel (set by
the user, called the “basic channel”) on (only) which it will listen for
“channel mode messages”. We would set this to a different channel
on the different sound modules. Then, the channel mode messages
intended for each module are tagged for the module’s “basic channel”.

This class includes the following subclasses (among others):

• “Stop sounding” messages. These tell the sound modules to stop
sounding, and are usually used in case some confusion leaves the
sound module sounding some notes when we don’t want it to. One
calls for a graceful shutdown, in which notes stop in the usual way,
perhaps with a decay of sound, or a “legato hangover”, as applicable
at the time. The other makes the module go completely quiet
immediately.

• Reset all controllers message. This sets to “normal” the collection of
behavioral parameters that can be varied by Control Change
messages.

• Channel configuration mode messages. These are used to establish
four different paradigms of how the sound module responds to
messages arriving over different channels.

System real-time messages and system real time messages

These messages primarily include those used to actually control
sequencers (units that send MIDI message streams to cause a
performance), and to provide a clock to keep multiple sequencers in
synchronism.

They carry no channel tag.

System exclusive messages

Initially, this class provided for “proprietary” messages used by
individual manufacturers of synthesizers to control specialized
features. Today, there is some provision for standardization of
“advanced” messages sent in this way.

They carry no channel tag.

MIDI—The Musical Instrument Digital Interface Page 25

MIDI MESSAGE FORMAT

Structure

With the exception of the “System Exclusive” (SysEx) message type,
which has an open-ended variable length, all MIDI messages comprise
one, two, or three consecutive bytes.

At the electrical interface, these bytes are sent as serial asynchronous
characters. The eight data bits in these characters are sent
least-significant bit first (as is done for the serial transmission of ASCII
characters).

There is no issue here of “big-endian” vs. “little-endian” (“Intel vs.
Mac”) sequence of multiple bytes. The bytes/characters are sent in the
sequence described.

Each message comprises one status byte, followed by zero, one, or
two data bytes. The most significant data bit of a status byte is
always “1”, while for a data byte, it is “0”.

In the status byte of a message with a channel tag (see below), the
three bits below the most-significant bit (that is, below in order of
significance) indicate the “message type”. In messages without a
channel tag, the remaining four bits of the status byte (four least
significant) complete the identification of the message type.

MIDI channels

Except for a few message types, every MIDI message carries what we
may call a channel tag, coded in the least-significant four bits of the
status byte. This tagging scheme in effect creates 16 distinct
“channels” over which messages may be considered to travel. This
allows one message stream to carry, on a multiplexed basis, messages
intended for separate physical devices (all “riding” the same stream,
perhaps through a daisy-chain wiring arrangement) or intended for
separate “parts” of a multitimbral synthesizer. Although the channel
code ranges from 0-15 (0000 through 1111), the channel number is
considered to range from 1-16.

Describing the coding of the status byte

Although a three-bit subfield of the status byte gives (in most cases)
the message type, we do not usually quote that three bit value in any
form. More likely, we will give the hexadecimal value of the whole
byte (including the most significant bit, always one), perhaps with a
variable symbol to represent the lower-order “nibble” Thus, for a Note
On message (the first type we will encounter in our encyclopedia), we

MIDI—The Musical Instrument Digital Interface Page 26

may say that the data byte is 9m, where m represents the MIDI
channel tag value (“MIDI channel”, or just “channel”, for short).

In fact the actual message type code for the Note On message is 1hex
(001bin). But in what we usually see, it looks as if it is 9hex (1001bin)
because the “status bit flag” is included in that reckoning. We rarely
see mention of the “bare” message type code.

Numerical values

We will give actual values of the bytes of each message (or of four bit
“nybbles” of a byte) in hexadecimal form (usually without any
indicator of the radix). Where meaningful, we will give the
corresponding decimal expression of the value afterwards in square
brackets.

CHANNEL VOICE MESSAGES

Note On message

This message tells the sound module to begin sounding a note.

Three bytes: 9m nn vv

where m is the MIDI channel code, nn is the note number, and vv is
the note velocity. (It is best to think of nn and vv as seven-bit
numbers, since the most-significant bit of their bytes is always 0, the
marker of a data byte.)

The note number tells the pitch of the note to be sounded. The value
3C [60] corresponds to middle C. The increment is a half step
(semitone), with greater values representing higher pitch. The range is
0-7F [0-127] Any value in the range is valid. (Of course, the note
specified may be outside the range of the “instrument” being
addressed, and thus may not be rendered.)

The note velocity indicates the loudness of the note, but may also
have implications on its timbre. The term is drawn from the concept of
the velocity with which a piano key is struck.

Note Off message

This message tells the sound module to cease sounding a note.

Three bytes: 8m nn vv

where m is the MIDI channel code, nn is the note number, and vv is
the note velocity.

The note number tells the pitch of the note to be ceased.

MIDI—The Musical Instrument Digital Interface Page 27

The note velocity potentially indicates the rapidity with which the note
is to be ceased (“release velocity”), but is meaningless in many cases.
It is the convention to use the value 40 [64] if this parameter is not
meaningful.

Alternate convention for the Note Off function

If a Note On message is sent with its velocity parameter, vv, having
the value zero, that is to be taken as an instruction to stop sounding
the note indicated by the note number, nn. Clearly the subtlety of
“release velocity” is foregone when using this convention. This
convention is useful in connection with a “shorthand” syntax for the
representation of a string of messages of the same type, used for
transmission efficiency (the “running status” syntax).

Key Pressure (“aftertouch”) message

This message indicates that the pressure on the key causing a note to
sound has changed after the initial “strike” (for systems that can vary
the loudness of the note while it is sounding).

Three bytes: Am nn xx

where m is the MIDI channel code, nn is the note number of the key,
and xx is the new “pressure”.

Keyboard Pressure message

This message indicates that the pressure on the entire keyboard (with
respect to notes on the referenced channel) has changed.

Two bytes: Dm xx

where m is the MIDI channel code and xx is the new “pressure”.

Pitch Bend message

This indicates that the pitch of all notes (initiated on the reference
channel) now being sounded should change (as done with a “pitch
bend wheel” on a keyboard instrument, a “pitch bend lever” on a
guitar, etc.) The resolution is 14 bits.

Three bytes: Am ll hh

where m is the MIDI channel code, ll carries the 7 least-significant bits
of the 14-bit value, and hh carries the 7 most-significant bits.
“Neutral” is given by ll,hh = 00,40 (essentially the center of the range
of a 14-bit number).

The “sensitivity” of this control (that is, how many units of change
makes a pitch change of one-half step) may be set with a message of
the “registered parameter number” family.

MIDI—The Musical Instrument Digital Interface Page 28

Program Change (PC) message

This message tells the sound module to adopt a certain “patch”
(timbre definition) for all notes to be subsequently rendered in
response to Note On messages received over the same channel.

Two bytes: Cm pp

where m is the MIDI channel and pp is the program number code.

The range of pp is 0-7F [0-127). However, in most (but not all) cases,
the program number itself is considered (for humans) to have the
range 1-128.

Note that the basic message syntax does not define what patch is to
be put in effect for a certain program number, that being left up to the
implementer. But (as mentioned in the body of the article), there are
standardized lists of patches with explicit associations to program
numbers.

Control Change (CC) messages

This is actually a family of messages, each of them setting some
property of the way in which the synthesizer is to render the notes
received over the same channel as the CC message—essentially, the
command of a “controller” (such as the sustain pedal of a piano).

Two bytes: Bm cc xx

where m is the MIDI channel, cc is the controller number, and xx is
the controller value.

For some controllers (“switched” controllers), there are actually only
two values that can be sent, “off” and “on”. For those, any value of
xx from 0-3F is interpreted as “off”, and any value of xx from 40-127
is interpreted as “on”. It is however considered good etiquette to
actually send xx with only the values “0” or “127”. In any case, it is
only the most-significant data bit (of the seven data bits of the second
data byte) that conveys the “off” vs. “on” indication.

For other controllers (“continuous” controllers), the xx value sent can
range from 0-127. If the value implies variation above and below some
“neutral” point, that point is usually represented by the xx value 40.

In many cases, the actual value to be set may (in some
implementations) be given in 14-bit precision. To do so, two different
CC messages are used. In one, the 7 data bits of data byte 2 are the
seven lowest-order bits of the complete 14 bit value, while in the
other, the 7 data bits are the highest-order bits of the complete 14 bit

MIDI—The Musical Instrument Digital Interface Page 29

value. The two messages are distinguished by the terms “LSB” and
MSB” in their names (for most significant byte and least significant
byte, respectively, although those are misnomers).

In general, if it is not needed to send the value to 14-bit precision,
only the “MSB” message is used. If, after initially sending both MSB
and LSB components, a change is needed that would only affect the
lower-order seven bits, just a new LSB message may be sent. (This
does not apply to the “bank select MSB” and “bank select LSB”
messages. See detailed discussion in the body of the article.)

The various members of the control change family are listed below,
identified by the cc code in hexadecimal.20 Where there are MSB-LSB
pairs (for 14-bit resolution capability), the two messages are shown
together even though the cc values are not adjacent.

Continuous controllers with 14-bit resolution capability

00/20 Bank select MSB/LSB (see discussion in body of paper)

01/21 Modulation wheel MSB/LSB

02/22 Breath controller MSB/LSB

04/24 Foot controller MSB/LSB

05/25 Portamento time MSB/LSB

07/27 Channel volume MSB/LSB

08/28 Balance MSB/LSB (symmetrical—neutral is 40/00—for
symmetry, the range is 01/00 to 7F/00)

0A/2A Pan position MSB/LSB (symmetrical—neutral is 40/00—for
symmetry, the range is 01/00 to 7F/00)

0B/2B Expression MSB/LSB

0C/2C Effect control 1 MSB/LSB

0D/2D Effect control 2 MSB/LSB

10/30 General purpose controller 1 MSB/LSB

11/31 General purpose controller 2 MSB/LSB

12/32 General purpose controller 3 MSB/LSB

13/33 General purpose controller 4 MSB/LSB

Switched controllers

40 Sustain (damper) pedal

20 Note that when we concisely identify a control change message in the form
“CC32”, the numerical portion is the cc value expressed in decimal form.

MIDI—The Musical Instrument Digital Interface Page 30

41 Portamento (off/on)

42 Sostenuto (off/on)

43 Soft pedal

44 Legato footswitch

45 Hold 2

46 Sound controller 1 (Default: Sound Variation)

47 Sound controller 2 (Default: Timbre/Harmonic Intensity)

48 Sound controller 3 (Default: Release time)

49 Sound controller 4 (Default: Attack time)

4A Sound controller 5 (Default: Brightness)

4B Sound controller 6 (No default defined)

4C Sound controller 7 (No default defined)

4D Sound controller 8 (No default defined)4E Sound controller 9 (No
default defined)

4D Sound controller 8 (No default defined)

Continuous controllers (7-bit resolution)

50-53 General-purpose controllers 5-8

54 Portamento control (xx is the note number of the note from
which to start the “slide”. For the next Note On message, the
note slides from this value to the note value in the Note On
message itself. The time over which the slide occurs is set by the
appropriate control change message or message pair, with
cc=05/25)

5B Effect 1 depth (Default: External Effects depth)

5C Effect 2 depth (Default: Tremolo depth)

5D Effect 3 depth (Default: Chorus depth)

5E Effect 4 depth (Default: Celeste depth—detune)

5F Effect 5 depth (Default: Phaser depth)

The remaining controllers are highly specialized; the specifics of their
operation and use are beyond the scope of this article.

06/26 Data entry MSB/LSB

60 Data increment

61 Data decrement

62/63 Non-registered parameter number (NRPN) MSB/LSB

64/65 Non-registered parameter number (RPN) MSB/LSB

MIDI—The Musical Instrument Digital Interface Page 31

CHANNEL MODE MESSAGES

All Notes Off message

This message terminates all notes being sounded by the synthesizer
(but see discussion of subtleties below).

Three bytes: Bm 7B 00

where m is the MIDI channel code. It must be the basic channel
established for the particular synthesizer.

The notes are terminated as if Note Off messages had been received
for all notes now sounding. That means that their normal ending decay
envelope is followed, any reverberation in effect will play out, and if
the “Hold” function is on, the notes will still sound.

All Sound Off message

This message immediately terminates all notes being sounded by the
synthesizer.

Three bytes: Bm 78 00

where m is the MIDI channel code. It must be the basic channel
established for the particular synthesizer.

Reset All Controllers message

This message resets all controller settings to their normal or default
positions

Three bytes: Bm 79 00

where m is the MIDI channel code. It must be the basic channel
established for the particular synthesizer.

Local Control message

This disables or enables the path from the keyboard of a keyboard
instrument to its internal synthesizer.

Three bytes: Bm 7A xx

where m is the MIDI channel code. It must be the basic channel
established for the particular synthesizer.

The value xx controls the off/on status: a value in the range 00-3F
indicates off and a value in the range 4F-FF indicates on (it is
preferable to send either 00 or FF).

MIDI—The Musical Instrument Digital Interface Page 32

Channel mode configuration messages21

These four messages control how the synthesizer responds to notes
on various channels. The details are beyond the scope of this article.

The four messages are:

a. Omni Mode Off—three bytes: Bm 7C 00
b. Omni Mode On—three bytes: Bm 7D 00

(The two above are alternatives—one or the other must be in effect.)

c. Mono Mode—three bytes: Bm 7E 00
d. Poly Mode—three bytes: Bm 7F xx

(The two above are alternatives—one or the other must be in effect.)

Any of the four combinations of either a or b in effect and either c or d
in effect constitutes a channel mode.

The most common arrangement (and most of the discussions in this
article are predicated on it) is to have Omni Mode On and Poly Mode in
effect (channel mode 1).

SYSTEM EXCLUSIVE MESSAGE

This is the only variable length MIDI message. It is primarily used in a
proprietary context.

The message structure is:

Start of System Exclusive message—One byte: F0

Data bytes (any number, all with most significant bit=0)

End of System Exclusive message—One byte: F7

If the System Exclusive message is to be followed promptly by any
other message (other than a System Real Time message), the End of
System Exclusive message indicator may be omitted.

The first data byte, or the first three, carry a manufacturers’
identification code (three-byte codes have 00 as the first byte).

SYSTEM REAL TIME AND COMMON MESSAGES

These are highly specialized. Only a few will be described here.

21 These are often called just “channel mode messages”, but they are only part of
the class called “channel mode messages”, so the notation is rather ambiguous.

MIDI—The Musical Instrument Digital Interface Page 33

Their status bytes have values in the range F1-FF. They have zero,
one, or two data bytes (determined by the message type).

The ones we list are only those involved in the control of a
subordinate MIDI sequencer.

Real time messages

MIDI Clock message

This message provides a steady stream of “clocks” to control the
pacing of a “subordinate” sequencer. It is sent 24 times per quarter
note (once per 16th note).

One byte: F8

MIDI Start Message

This message makes a subordinate sequencer commence play, from
the beginning of the current “song”, upon the arrival of the next MIDI
Clock message.

One byte: FA

MIDI Stop Message

This message makes a subordinate sequencer cease play. The
subordinate sequencer sets the value of its internal song position
pointer to the next “clock position” (units of one 16th note) after the
cessation of play, in anticipation of the possibility of resuming play at
that point by command of a MIDI Continue message.

One byte: FC

MIDI Continue Message

This message makes a subordinate sequencer commence play, from
the beat indicated by the current value of the subordinate sequencer’s
song position pointer, upon the arrival of the next MIDI Clock
message.

One byte: FB

System Common message

MIDI Song Pointer Position message

This message forces the song position pointer in the subordinate
sequencer to a certain value, in anticipation of play being commenced
at that point by command of a MIDI Continue message.

MIDI—The Musical Instrument Digital Interface Page 34

Three bytes: F2 ll hh

where ll carries the 7 least-significant bits of the 14-bit parameter
value, and hh carries the 7 most-significant bits.

One unit of the parameter of this message corresponds to 6 MIDI
timing clocks, or 1/4 of a quarter note, or one 16th note. A value of
zero implies the very beginning of the song (the beginning of the first
beat of the first measure).

