

Copyright © 2013 Douglas A. Kerr. May be reproduced and/or distributed but only intact, including
this notice. Brief excerpts may be reproduced with credit.

The mechanics of the JPEG
image encoding system

Douglas A. Kerr

Issue 2
June 7, 2014

ABSTRACT

The JPEG image encoding system provides for a representation of a
digital image in far fewer bits that would be required by a
"straightforward" representation. The system comprises many
ingenious stages. In this article, I describe the working of these stages
in considerable detail.

1. INTRODUCTION

1.1 Preamble

The JPEG image encoding system was originally developed under the
auspices of a group called the Joint Photographic Experts Group,
hence its initialistic name.

The system provides for a representation of a digital image in far
fewer bits than would be required by a "straightforward"
representation. However, in its most common mode of operation, the
encoding is not "reversible"1; that is, from the encoded representation
(such as we might find in a "JPG" file out of our camera), we cannot
precisely reconstruct (for display or printing) the original image. This is
the price we pay for a far more economical (in terms of bit storage)
representation of the image.

The JPEG encoding system comprises several stages, each of which
has a fascinating story and is the result of extremely clever technical
work.

But their very cleverness makes them hard to describe concisely but
accurately. And they are often given names that are not too helpful
(sometimes actually ill-advised).

And we often seek to find "just where the bits are saved", but that
quest can be frustrating. We think that a certain stage must do it, but
in fact we may find that after that stage the bit load is even increased.

1 Often described as "not lossless" or "lossy", this based on the notion that an
inaccurate reconstruction results from the "loss" of data. In fact, the data is still
there; it has just been "inaccurately reproduced".

The mechanics of the JPEG image encoding system Page 2

But it turns out that, like a good magic trick, this is all preparation, and
just when we least expect it, the white doves fly out of the hat, and
there are far less of them than we had backstage.

In this article, I will try and describe the various stages, just what
really happens in each, and where it fits in getting the white doves out
of the hat.

1.2 Architecture

The principal stages of the actual JPEG encoding process are these:

• Partitioning of the image data into blocks for encoding.

• Transformation of the color space

• Chroma Subsampling

• Discrete cosine transform (DCT)

• (Re)quantization

• Compaction of the data by zero-run-length encoding and Huffman
encoding.

• Consolidation of the encoded data for all blocks into a single data
set.

• Composing the output file, whose "payload" is that data set.

I will discuss in considerable detail each of these except for the ones
shown in italics.

2. THE STAGES OF JPEG ENCODING

2.1 Partitioning of the image data into blocks for encoding.

Simplistically speaking, the initial image data is treated in blocks of
8 × 8 pixels. But there are two complications:

• If the dimensions of the image are not multiples of 8, extra
"padding" pixels must be added. (These will be shorn off after
decoding.)

• As we will see shortly, the chroma aspect of pixel color may only
be included for every 2, 4, or even 8 pixels. That aspect is treated
in blocks of 8 × 8 values. Such a block may correspond to an
"encoding unit" of perhaps 16 × 8, 16 × 16, or even 32 × 16
pixels. To make that work out, we may need to "pad" the image
until its dimensions are multiples of the "encoding unit " size.

The mechanics of the JPEG image encoding system Page 3

2.2 Transformation of the Color Space

2.2.1 The sRGB color space

The image as presented to the JPEG encoder will be in some
recognized color space. For our purposes here I will assume that the
color space is the one identified as sRGB. In this scheme the color of
each image pixel is described by a set of three coordinates, known as
R, G, and B. They each tell the amount of three precisely-defined kinds
of light (the three primaries), also called R, G, and B (so you can see
that there will be ample opportunity for confusion here).

The coordinates R, G, and B all have a range of 0-255 (integer values
only). They bear a nonlinear relationship to the "amount" of the
primary they indicate (a matter known, for historical reasons, as
gamma precompensation).

2.2.2 The sYCC color space

As the first stage of the JPEG encoding process, we convert the color
of each pixel from the sRGB description into a form known as sYCC
(which is short for "standard Y'CbCr"). It is something like a
luminance-chrominance representation, but not quite.

The description of a color in this scheme has two components:

• A value, Y', that is obtained by multiplying the R, G, and B values
for the pixel color in the sRGB color space by three different
constants and adding the results. It at first seems that if we do this
right, this will be the luminance, Y, of the color. But it isn't,
because the R, G, and B are nonlinear transforms of the variables
telling the amounts of the three primaries. (True luminance, Y,
must be determined from the linear values, sometimes designated r,
g, and b). This value, Y' is not even a non-linear transform of Y.
But it is a nonlinear sort-of luminance.

It is formally designated Y' to remind us of this important
difference from Y (but often the prime is omitted, so be careful). It
is often called luma, a term borrowed from a somewhat similar
situation in the NTSC analog color television system.2 Sadly, it is
often (but incorrectly) called "luminance"

• A two-dimensional (in the mathematical sense) value represented
by the values of two variables, Cb and Cr. These are defined thus:

2 There, luma is conveyed by the video carrier proper; it is the "monochrome" signal.

The mechanics of the JPEG image encoding system Page 4

Cb = B – Y'

Cr = R – Y'

These together sort-of describe the chrominance of the color, but not
quite (because they are derived from the non-linearized values R, G,
and B). Their symbols do not have a prime to warn us of that, since
there is no use of Cb and Cr to mean "aspects of an actual
chrominance".

The property defined by these two values is often called chroma,
again borrowed from analog television practice.3 Sadly, it is often (but
incorrectly) called "chrominance"

Now, what is the point of this? Is less data required to represent the
image in this form than in sRGB form? No. In fact, at this stage of the
process (inside the JPEG encoder), Y', Cb, and Cr may be represented
in more than 8 bits each, so the total number of bits may have
escalated!

But having the image in this form allows us to (later in the chain) take
advantage, in several ways, of properties of the human visual system,
which will help us on the way to reducing the number of bits needed
to represent the image.

2.3 Chroma Subsampling

When we left our image at the end of the prior section, each pixel was
described in terms of three values, Y' (a sort-of-luminance) and Cb and
Cr (together a sort-of-chrominance).

During the work on the NTSC color television system, note was taken
of an earlier discovery: that the human eye could note finer changes in
luminance (or luma) than in chromaticity (or chrominance, or chroma).
Advantage was taken of this in the partitioning of the overall TV
channel bandwidth into portions for luma and chroma. Chroma was
given a substantially smaller ration than luma.

In JPEG encoding, we do a wholly-comparable thing. We do not
include in the final data package a representation of Cb and Cr for
every pixel. Rather, we include a representation of Cb and Cr for only
1 out of 2 pixels, or maybe only 1 out of 4 pixels, or maybe even only

3 There, chroma is conveyed by the color subcarrier, which is phase and amplitude
modulated to convey the two aspects of the property. It is zero where the image
color is "gray" (that is to say, white of some luminance).

The mechanics of the JPEG image encoding system Page 5

1 out of 8 pixels.4 This then results in a substantial decrease in the
overall bit content of the final encoded image.

In fact, this may not be done by just dropping the other Cb and Cr
values. Rather, it may be that the Cb and Cr values that are included
are each the average of 2, or 4, or 8 original values that are sort-of
centered on the pixel that carries a Cb and Cr.

In either case, this process in effect just reduces the pixel resolution of
the system for chromaticity (chroma is its proxy) compared to
luminance.5 6

The amount of "decimation" can be varied to trade off the reduction in
bit load against the reduction of chromaticity resolution and the
attendant visual degradation of the image.

The notation for describing the chroma subsampling pattern (and
resulting decimation fraction) is a very curious one, with such "values"
as 4:4:4, 4:2:2, 4:2:0, and so forth. That is beyond the scope of this
article.

2.4 THE DISCRETE COSINE TRANSFORM (DCT)

2.4.1 Concept of the discrete cosine transform

If we have a spatial "waveform" (such as the luma of an image across
a horizontal track) described by samples spaced at spatial interval p
(perhaps the pixel pitch), and if the waveform contains no frequencies
at or above a spatial frequency of 1/2p (that limit is called the Nyquist
frequency, fN), then that set of samples precisely describes the
underlying waveform.

So I can use numerical examples, suppose we deal with a fixed-length
segment of the waveform, in particular the length such that the
number of samples over the length of the waveform is 8. (In fact this
is what we usually encounter in JPEG encoding).

We can also describe the waveform by conceptually decomposing it
into:

• A constant value ("flat line") of a certain amplitude.

4 This is sometimes described as a decimation ratio of 1:2, 1:4, 1:8, and so forth.

5 Much the same thing was done earlier in the camera with the use of a CFA sensor.
This is however a process wholly separate from that.

6 The "decimation ratio" to be used is chosen to get the desired balance between
(a) reduced bit load and (b) degradation of the representation of chromaticity.

The mechanics of the JPEG image encoding system Page 6

• A cosine function of a certain amplitude with frequency fN/8.

• Cosine functions with certain amplitudes of frequencies 2•fN/8,
3•fN/8, and so forth through 7•fN/8 (that being just beneath the
Nyquist limit in this case).

and stating these 8 amplitudes (then known as DCT coefficients). This
is called the discrete cosine transform (DCT) of the original set of 8
samples (and thus of the original waveform). From it, the original set
of samples (and the waveform they describe) can be reconstructed.

Those familiar with the similar concept of the discrete Fourier
transform (DFT), from which the DCT is descended, might think that
since in the DCT we decompose the original "waveform" into only
cosine components, not cosine and sine components as we do in a
DFT, we have somehow lost the "component phase" information,
resulting in an imperfect representation of the original "waveform".
However, in the DCT we take cosine components at half the
frequency interval of the components in the DFT (leading to the same
number of coefficients overall), and the result is that the set of cosine
coefficients "perfectly" describes the original "waveform".7

By the way, each of those cosine functions is held and handled in
sampled form, there being 8 samples over the duration of the original
waveform (just as there was for the waveform itself). Thus the
moniker "discrete"—it pertains both to the waveform (held as
samples) and the cosine functions that form the result of the
transform (held as samples).

2.4.2 Reconstruction of the original "waveform"

To reconstruct the original set of samples from that description, the
"decoder":

• takes each of the coefficients and multiplies it by a cosine function
at the corresponding frequency (those each being known in terms
of the values of eight samples of the function at intervals p), and

• multiplies the values of these eight components for each of the
eight points along the length of our "battle zone", thus giving the 8
original sample values (and thus implying the original waveform).

7 For a source block of 8 values, the DFT will give 4 pairs of coefficients (each with
a cosine and sine coefficient), at frequencies of n•FN/4, while the DCT will give 8
cosine coefficients, at frequencies of n•FN/8. Thus in either case, 8 source values
result in 8 transform coefficients, a situation of "preservation of degrees of freedom",
suggesting that a perfect representation is possible (and it in fact does occur).

The mechanics of the JPEG image encoding system Page 7

2.4.3 The two-dimensional sample block

I used a waveform of length 8 samples because, in the most common
use of the JPEG encoding algorithm, we work with blocks that
comprise 8 × 8 pixels. Again we will work with the luma value (Y') of
each pixel.

We could take the first row of 8 pixel values and treat it in just the
way I described above for an "8-sample long" waveform, yielding a
representation in terms of 8 DCT coefficients. We could then do that
(separately) for the 2nd, 3rd, and so forth rows, ending up with 8 sets
of 8 coefficients (64 in all) which collectively describe the original set
of 64 pixel values. We could show those in an 8 × 8 table, or matrix.
Each row would have the 8 coefficients that describe the "waveform"
of one row of pixel values.

Recall that in each set of coefficients, the first one (we say
"coefficient 0") gives the amplitude of the "zero-frequency" cosine
function (the one that is really a constant term), the second one
(coefficient 1) gives the amplitude of the cosine function of frequency
1•fN/8, the third one (coefficient 2) gives the amplitude of the cosine
function of frequency 2•fN/8, the fourth one (coefficient 3) gives the
amplitude of the cosine function of frequency 3•fN/8, and so forth. 8

2.4.4 The two-dimensional discrete cosine transform

But it turns out to be advantageous (for reasons that are beyond the
scope of this article) to treat the two-dimensional nature of our little
array of 64 pixel values in a consolidated way (using what is called
the "two-dimensional DCT"—who would have guessed!).

Again, the result can be presented as an 8 × 8 matrix of coefficients.
All of it pertains to the entire 8 × 8 block of pixels (that is, it is not
"row per row", as in the example above).

The coefficient in position 2, 1 (third column, second row) prescribes
the amplitude of a "two-dimensional" pattern that covers the entire
pixel block. It consists of the scaled sum of two cosine functions
(each with the same amplitude: that prescribed by the coefficient) that
extend over the entire field of the 8 × 8 block of pixels. One, which
"runs horizontally" across the field of 8 × 8 pixels (and covers every
row), has frequency of 2•fN/8. The other, having the same amplitude,
"runs vertically" across the field of 8 × 8 pixels (and covers every
column), and has frequency of 1•fN/8.

8 One cycle of FN , by definition, covers a span of two sample pitches.

The mechanics of the JPEG image encoding system Page 8

There are 64 two-dimensional patterns altogether, based on 8
possibilities each for the frequency of their horizontal variation and the
frequency of their vertical variation. For each, a coefficient tells us
"how strongly" that entire pattern should be applied (not at all, if the
coefficient is 0).

In the left-hand part of figure 1 we see a graphic presentation of these
64 patterns (with amplitude 1). The convention is that white means a
value of the pattern function of +1; black means a value of -1.

Figure 1. DCT patterns; pattern 2,1.

The scaled summation of all these 64 patterns, each participating with
the "potency" dictated by its coefficient (those with zero coefficients
not participating at all), form an overall two-dimensional pattern that
tells us the pixel luma value at each of the 64 pixel locations in our
little "block".

In the right hand part of figure 1, we see an enlargement of the
pattern in cell 2,1 (the one discussed earlier). We see that in the
horizontal direction, its variation makes 1 cycle across the block (its
frequency is fN/4); in the vertical direction, its variation makes 1/2
cycle across the block (its frequency is fN/8).

Note that the patterns always have only 8 different values across the
width or height of the block; the cosines, regardless of frequency, are
held in terms of 8 values over that span. For example, note that the
pattern in cell 0,7 (the lower-left corner) makes, in the vertical
direction, 3-1/2 cycles across the height of the block.

But that is hard for us to see, since we see its value at 8 places
across the height of the block. This is typical for the sampled
representation of a function whose frequency is near the Nyquist

The mechanics of the JPEG image encoding system Page 9

frequency (in this case, 7/8 FN). The samples, nevertheless, represent
a pattern that makes 3-1/2 cycles across the height of the block.

Do we fall short of an accurate representation by only recognizing
spatial frequency components in the waveform implied by the luma
samples up to a frequency of 7•fN/8? Do we arbitrarily stop there so as
not to generate "too many bits"?

No, The waveform implied by the samples cannot contain any
component with frequency at or above FN. (Ah, yes, the Nyquist limit!)

But what if we sampled a waveform that contained a component at,
say, 10•fN/8? Well the resulting set of samples would imply a
waveform that had a component at 6•fN/8. (Ah, yes, that old foldover
aliasing!) For better or worse, our DCT scheme would capture that
result.

Well, then, suppose we had a set of samples that implied a waveform
with a component at, say, 5.5•fN/8? That can’t happen. Our
"waveform" has a finite length (that of 8 sample periods), and it can
only have components with frequencies of integer multiples of fN/8
(and up through only 7•fN/8).

So yes, we have captured the whole enchilada.

We have turned a set of 64 luma values into 64 two-dimensional DCT
coefficients, which together represent the very same thing. Has this
cut down the amount of data? No. Well, then what was the point of
the exercise?

It allows us to do two things (in two later stages of the process) that
will cut down the amount of data.

2.4.5 Precision

At this point the 64 coefficients are probably each represented in 12
bits.

2.5 (Re) quantization

Formally, quantization refers to taking information of a "continuous"
nature in the value direction (that is, it can actually take on any value,
albeit perhaps over a limited range) and expressing it in discrete form
(where it can only take on certain values, often multiples of some unit).
There, it will have an explicit precision ("two decimal places","8 bits").
When we read an analog fever thermometer, and report the result as
98.6° F, we have "on the fly" quantized its reading (to a precision of
one decimal place). (The actual temperature might be
98.5853218704… ; we might be able to read it as about 98.55.)

The mechanics of the JPEG image encoding system Page 10

Often we will have information already expressed in discrete form (all
the data we work with in JPEG is such) but wish to restate it to a
lower precision (generally to reduce the number of digits needed to
convey a body of data "which we do not need to know so precisely").
This process is properly called requantization (a term we rarely see),
but in the JPEG literature it is just spoken of as "quantization". I will
nevertheless generally use the rigorous term here.

The 64 coefficients in the output of the DCT (say, for luma) have a
certain precision (likely 12 bits). If we reduce the precision, fewer bits
will be needed in our final image file, but of course the image will look
more coarse. Such artifacts as "posterization" and "banding" are in
fact manifestations of "excessively coarse" quantization of luma.

But the human eye is not equally sensitive to the "coarseness" of
reproducing luminance for all spatial frequencies. Generally speaking, it
is more sensitive for the lower spatial frequencies, and less sensitive
for the higher spatial frequencies.

Recall now that we have the "cosine" description of the luma of our
little 8 × 8 pixel block organized by spatial frequency (in a
vertical/horizontal combination pattern way) in the 64 cells of the DCT
output table.

So we could set up a plan in which the values near the upper-left
corner (lower frequencies in both directions) are held to a high
precision, while the values near the lower-right corner (lower
frequencies in both directions) are reduced to a much lower precision,
and those near the lower-left and upper-right corners (high frequency
in one direction, low frequency in the other). Those near the center
(moderate frequency in each direction) are reduced to an intermediate
precision, and so forth.

And so we do just that.

The re-quantization is controlled by a quantizing table. Figure 2 shows
a commonly-used one for luminance:

Figure 2. Base luminance quantizing table

The mechanics of the JPEG image encoding system Page 11

(This one is used for re-quantization of the luma values; a different
table is used for re-quantization of the chroma values.)

The value in each cell (the quantization control value9, q) controls the
new quantization of the DCT coefficient found in the corresponding
cell of the DCT output matrix. The larger the value, the more is the
precision reduced. A value of 1 keeps the precision of the value as is.
The higher the value, the more "coarse" is the new quantization
(remember, the value was already quantized!). A value of 2 makes the
precision "twice as coarse" as it was.

To understand how this works, we will look at an example with
decimal numbers. Suppose that as part of a set of data we have the
number 4325 (expressed to a precision of "units"). We wish to round
(re-quantize) that value to "hundreds". Thus our quantizing control
value, q, would be 100.

First we divide the value by q (100): 4325/100 = 43.25.

Then we round that to the nearest integer and get 43.10

Note that the value is now represented to lesser precision than before
and scaled down in size.

Note that at this point, the value can be represented by fewer decimal
digits (fewer bits) than before. We tend to say that this is because of
the "more coarse precision", and philosophically it is, but as to the
actual mechanics, it is a result of the scaling down—the number is just
plain smaller!

Then we multiply by q (100): 43•100 = 4300.

So 4300 is our value (now "rounded" to hundreds).

Note that at this point, despite its "lesser precision", the value in
this condition takes as many decimal digits (or bits) to represent it
as before (at least in the obvious way). Hold that thought.

Now suppose our reason for making the value "more coarse" is to
save data in transmitting our data collection to a distant point. In that
case, we can omit the last step (multiplication by q) and just send

9 My term.

10 There are of course several ways to do that, and we need not be too concerned
with that here. For example, one way is to add 50 before dividing by 100, and then
just drop the fractional part. I didn't describe that because it obscures the real thing
we want to do.

The mechanics of the JPEG image encoding system Page 12

"43" to the distant end (saving the transmission of two digits, "00",
worth about 6.6 bits). The distant end knows that this kind of number
is "in hundreds", so it interprets the received number as 4300.

Note that the reason we can uses fewer digits is not that the
representation is "more coarse". It is because the value is smaller!

Now, looking at the table, and considering the lower right-hand cell,
we see a q value of 99. That means that after re-quantization, the
value of that coefficient is:

• 1/99 its original size

• 99 times as "coarse" (relative to its scale), as if its "unit" were
now 99 times as big as before. Actually, its unit is still 1 (always
is), but because the value is 1/99 its original size, in effect the unit
is 99 times as big as before.

But if we have done this so we can represent the value in fewer bits
than before, it is the change in its size—not the greater "coarseness of
its representation, per se— that brings that about!

By the way, the quantizing table is not fixed by the JPEG specification
(although the one shown above is "suggested" there). The
manufacturer of the JPEG encoder may choose a different table, based
on its own experience with file size-performance tradeoffs.

And in any case, the user of the application or camera may be given
the opportunity to change the quantizing plan. A more coarse
quantizing plan will result in a smaller overall file size for the image,
but will typically increase the degree of imperfection in the
reconstructed image. This choice is typically made by the user by way
of a "JPEG quality" control in the application. (In the case of JPEG
files from a camera, this may be a camera menu setting.)

This variability as to the quantizing table will not confuse the receiving
JPEG decoder, since the quantizing table actually used for the
particular image (wherever it came from) is explicitly described in the
file "header". The q values in it are used by the receiver to multiply
the received coefficient values at the receiving end to actually
complete the re-quantizing process (as when in the decimal example
we finally got to "4300").11

11 In fact, in the ITU JPEG specification, this process is called "dequantification",
which is not at all apt (it is actually just "descaling"—the number is still of "reduced
precision").

The mechanics of the JPEG image encoding system Page 13

A common scheme of creating different quantizing tables (to suit
different user wishes as to the file size vs. image "quality" tradeoff) is
to start with a base table (to be used as is for some "midrange"
quality) and then scale all the q values in it up or down to make other
tables (with their own "quality" implications.

Often the base table is in fact the one suggested by the JPEG
specification.

How do we tell the application how to scale the quantizing table?
There are many ways. One way defined by the Independent JPEG
Group (which provides a library of functions for use in constructing
JPEG encoders and decoders) uses as the "knob" a quality level,12 Q,
which can potentially be given any value from 1-100. A fixed (but
nonlinear) algorithm turns any value of Q into a value of a scaling level,
S. Then, all the q values of the base table are multiplied by a single
scaling factor, which is S/100.

The algorithm is such that for various values of Q (chosen by the user),
the resulting scaling factor is as shown in the table of figure 3:

Quality
setting, Q

Scaling
factor,
S/100

1 50
10 1.9
50 1.0
75 0.5
90 0.2
100 0*

* But the actual scaling process when S/100 = 0
leads to all q values being 1, making the "do not
requantize" table.

Figure 3. Table scaling based on "Q".

We see that a quality (Q) setting of 50 results in a table just like the
base table. Thus we can say that the base table produces "quality 50"
quantization. (How "good" is that in terms of the reconstructed
image? There is no simple way to describe that.)

In figure 4, we see a table made from the base table we saw above
with a Q setting of 80 (so S will be 40, and all the q values will be
0.40 times the values in the base table).

12 My term.

The mechanics of the JPEG image encoding system Page 14

Figure 4. Scaled luminance quantizing table (Q = 80)

But not all applications work that way. Some may offer "JPEG quality
settings" from 1-12, and some may offer JPEG quantity settings on a
1-100 scale (but that does not necessarily correspond to values of the
quality control variable Q I spoke of above). Or in cameras we may
have two or three choices with names like "normal", "fine", and
"superfine".

The question of "how would we describe the image degradation
resulting from various values of Q" is a complex one, beyond the
scope of this article. But note that in today's digital cameras, for the
"best" JPEG quality setting, the value of Q (for both luma and chroma
re-quantization) is typically made about 95.

In any event, although we can't see just yet how this happens
mechanically, we can readily imagine that making the quantizing
"more coarse" should somehow result in fewer bits being needed to
convey the 64 DCT coefficients that describe each 8 × 8 pixel block
of our image. Where that actually pays off is in the next stage.

2.6 Entropy Encoding

2.6.1 The strategy

At this point in the overall process we have for each 8 × 8 block of
pixel luma values a set of 64 DCT coefficients, each held in a fixed
number of bits. By a very ingenious process, we are able to draw upon
certain statistical properties of the set of 64 values to help us
precisely represent them in far fewer bits (overall) than in their present
form.

2.6.2 The "DC coefficient"

The coefficient in location 0,0 of the table gives the amplitude of the
two-dimensional pattern which is a constant in both directions
because its two cosine functions both have zero frequency. Borrowing
a term from electrical engineering for a zero-frequency component
("direct current", or DC), this is called the "DC coefficient"13. It is in
effect the average of the luma values over the entire block.

The mechanics of the JPEG image encoding system Page 15

Of course, this value does not typically vary rapidly from block to
block.

Thus, in the "final result" for each block, we record the difference in
the DC coefficient for this block from that of the previous block. The
representation is called differential pulse code modulation (DPCM), a
term mindlessly borrowed from digital audio encoding practice (where
it already doesn't makes much sense).

These differences can be, on average, encoded in fewer bits than
would be required for the actual values.

2.6.3 The "AC coefficients"

Since the 63 remaining coefficients describe cosine patterns, they are,
by analogy to electrical engineering concepts, of an "alternating
current" (AC) nature, and thus are spoken of collectively as the "AC
coefficients."13

2.6.4 Encoding

A very clever scheme is used to encode this suite of 64 values. It
depends in part on the fact that there are usually a lot of zero values
in the suite, and they tend to be concentrated toward the coefficients
in the lower-right portion of the table (those for patterns with higher
vertical and horizontal frequencies).

Figure 5. DCT coefficient zig-zag readout path

Adapted from an illustration by Alex Kristov
via Wikimedia Commons

13 No, as an electrical engineer, this does not delight me.

The mechanics of the JPEG image encoding system Page 16

We start by making a single string of all 64 of those values, taking
them in order from the upper left corner and working overall toward
the lower right along a zigzag trail. Figure 5 shows the path.

Having done that, we find that, especially in the later part of the string,
we may have many groups of consecutive zeros. And we exploit this
in our encoding.

Basically, in the output of this stage, which is another string, we only
actually include the non-zero values. But we prefix each one (other
than the first one—the "DC" coefficient) with a four-bit field that says
"by the way, there were n zero values before this non-zero value; be
sure and put those back in when this is decoded". (Of course for the
first coefficient, there could be no preceding zero-value coefficients,
thus no need for that field.) This is described in the JPEG
documentation as "run-length encoding". (It is in fact a very
specialized version of such, only relating to runs of one value: zero.)

This process is an important contributor to the reduction in the number
of bits needed to covey all the DCT coefficients.

Now, we squeeze a little more blood out of the onion. Non-zero values
of different sizes can be represented in different numbers of bits (just
as we can represent the decimal value "23" in two decimal digits but
need four digits for the value "4108".

Many of the coefficients have small values, so it is wasteful to
allocate some fixed number of bits in the string for each non-zero
value. So we only allocate the number of bits needed, but, so the
"recipient" can keep track of what is going on in this string of bits, we
prefix the actual value bits with a four-bit field that tells "how many
bits (right after me) carry the actual value".

Thus, in this new string, for each non-zero value, we have a group of
bits we can think of as representing three numbers, thus:

ZLV

Where Z (four bits) tells how many zero values there were preceding
this non-zero value (which need to be put back in during decoding), L
(four bits) tells how many bits that follow give the actual value, and V
(that many bits) is the actual value.14

(Can't you imagine how much fun this must have been to invent!)

14 V (a signed value) is given in a peculiar (and mathematically-handy) variant of
"ones-complement" notation. The peculiar version is possible because we know the
range in which the value falls (because of the clue given by L).

The mechanics of the JPEG image encoding system Page 17

In the case of the first (DC) coefficient, the bit group is only LV.

There are two special provisions. If there are 16 or more consecutive
zero values preceding a non-zero value, that cannot be represented in
the usual way (since the maximum possible value of Z is 15). Rather,
one or more runs of 16 consecutive zero values are represented by a
special ZL sequence, 15,0 (called "zrl"), which means "16 zero values
not followed by a non-zero value."

If, at a certain point in the value sequence, there are only zero values
for the rest of the block, they are all represented by a special ZL
sequence (called "eob"), 0,0. This means "all further values up to the
total number expected for this block are zero."

In each of those cases, the "string parser" does not expect a V
component; an L value of 0 means "number of bits for V is: zero".

Now, at this point, we already have the beginning of the payoff in
terms of a reduction in the number of bits to represent the overall
image. It comes about from the re-quantization of the DCT coefficients.
That's because the re-quantization does not just make the
representation coarser, but the value (at the point where we stop the
process) is actually smaller, and thus can be represented in fewer bits.

And as we have just seen, in the "final" data string, in fact only the
number of bits absolutely necessary are used for each coefficient
value. So we already collect on some of the promise of bit load
reduction. In particular, if the number of bits required to represent the
value is less than 8, then that number of bits, plus 4 bits for L, will be
less than 12 (the number of bits to represent every coefficient if we
didn't use this scheme.

Of course for values requiring greater than 8 bits to represent, the bit
load will be greater than for straightforward representation. But since
so many values are fairly small, there is ordinarily a substantial net
saving.

But we're not done yet in our quest for a smaller file. We take one
more step.

If we interpret the 8 bits in Z+L15,16as a single number (although as
such it has no actual meaning, like the concatenation of your house
number and your age), we find that the different values we encounter

15 I use "+" here to symbolize concatenation, not addition.

16 In the case of the first (DC) coefficient, we only work with the four bit number L
(there is no Z).

The mechanics of the JPEG image encoding system Page 18

are not present with comparable frequency. Certain 8-bit values are
much more common than certain others.

When we have such a situation in a set of data, we have the
opportunity to encode these 8-bit values with an average, over the
entire image, of less than 8 bits per value. Here this is done by way of
a Huffman code 17 , which assigns codes of different lengths to
different values.

The values known (or assumed) to occur more frequently are given
shorter codes; the values known (or assumed) to occur less frequently
are given longer codes. If the assumption of relative frequency of
occurrence in fact plays out, the total number of bits required for the
Z+L "values" in the entire image is less than if every Z+L "value"
were left encoded in 8 bits.

The "table" that assigns codes to the various possible values can be
based on an assumption as to the relative frequency of occurrence of
the different possible values, and used for every image. A suggested
table on this basis is provided in the JPEG specification, and any JPEG
decoder is able to work with images encoded on that premise.

More compact coding can be usually be achieved with a table that is
optimized for the actual frequencies of occurrence of various values as
they occur in the particular image (a "preliminary survey pass" being
made by the encoder to get the statistics on which to base the table
design). That table is then included in the file "header" for the benefit
of the decoder.

By the way, Huffman coding is "reversible"; that is, the original values
are precisely recoverable from the Huffman-encoded form. (The same
is true of the alternative, arithmetic coding.)

2.6.5 The term "entropy encoding"

Codes of the Huffman type are often said to use "entropy encoding',
because they seek to match the number of bits used to represent each
data item to the true "amount of information" in it (known in
information theory as the entropy of the item, a term borrowed from
the field of thermodynamics). The same is true of arithmetic coding.

Because one part of the encoding process of this stage is done with a
Huffman code (or arithmetic code), the whole process is called in the
JPEG literature "entropy encoding".

17 Although the JPEG standard provides for an alternate system, called arithmetic
coding, which is beyond the scope of this article.

The mechanics of the JPEG image encoding system Page 19

2.7 What about chroma?

So far, after the second stage, we have spoken specifically only of
processing the luma aspect of the image information.

In fact, there are parallel processes, almost identical, conducted for Cb
and (separately) Cr. There are a few differences, most prominently:

• The block of values used is again most commonly 8 × 8, but this
will not generally correspond to an 8 × 8 block of pixels owing to
chroma subsampling.

• A different quantization table is used. Again, there is a "suggested"
base table in the JPEG specifications, and again tables with
differing quantization may be constructed with the algorithm
running on the JPEG quality control value, Q. The same value of Q
might not be used to scale both tables.

2.8 A curiosity

The luma value, Y' is not a signed quantity (it is always positive), but
for various reasons (to some extent consistency with how Cb and Cr,
which are signed, are represented) it is arbitrarily represented with an
offset. It is basically encoded in 11 bits, with 1024 being subtracted
first.

We would think that the highest possible value (which would come
from R,G,B = 255,255,255) would be 2047, or 1023 after the offset.

The lowest value, which would come from R,G,B = 0,0,0), would be
0, or –1024 after the offset.

But in practice, the highest encoded Y' value (as reported by utility
programs that decode the JPEG file) is 1016 (the lowest is –1024 as
we would expect).

I don’t understand all I know about this.

3. WRAPPING UP

3.1 Consolidation

Next, the final bit strings from all the blocks in each encoding unit are
consolidated, and then all the bit strings from all encoding units are
consolidated into a single byte-organized data stream. This is fairly
trivial in principle, but there are some tricky details. I will not here
discuss the process.

The mechanics of the JPEG image encoding system Page 20

3.2 The output file

What we have so far is a set of bits that describe the image in
JPEG-encoded form. But to be able to use this, we normally put it into
a file. There are several standardized formats for such a file, including
JFIF and DCT. These file structures have to carry the JPEG-encoded
image proper, such vital collateral information as the quantizing tables
and Huffman encoding tables used in the process, and various types
of metadata related to the image as such. The formats are very
complicated. I will not here discuss this stage of the overall process.

4. BENEDICTION

Thanks to Carla Red Fox for her insightful copy editing of this difficult
manuscript.

This work is dedicated to her on the occasion of our 15th wedding
anniversary, June 12, 2014.

