
JPEG Compression of Still Images

Douglas A. Kerr, P.E.

Issue 1
August 16, 2003

ABSTRACT

A technique known as JPEG is widely used for the compression of
digital data representing photographic still images. In this article, we
explain how this technique works. Appendixes give tutorial insight
into several technical concepts that are involved.

1. INTRODUCTION

Digital representations of photographic still images, especially when a
fairly-high resolution is involved, constitute large sets of data (“image
files”). Practical considerations of storage of these files and their
transmission over data networks make it highly desirable, if possible,
to replace the original data in the files with another file, smaller in
size, from which the original image can nevertheless be reconstructed
with an acceptable degree of fidelity. Such a process is referred to as
image data compression.

A compression technique known as JPEG is widely used for this
purpose. In the mode of most interest to us it provides non-reversible
(“lossy”) compression: the set of data recovered at the “destination”
is not identical to the original set of data.1 Thus the image represented
by the recovered data is not identical to the original image. The hope
is that the discrepancy in the destination image, as perceived by the
human viewer, will not be noticeable, or in any event will not interfere
to an unacceptable degree with the purpose to which the image is to
be put.

JPEG is an acronym for Joint Photographic Experts Group, a working
party operating under the joint auspices (hence the name) of the
international standards bodies CCITT (now, ITU-T) and ISO/IEC. This
group developed and codified the JPEG standard.

1 For a discussion of the concept of reversible (“lossless”) and non-reversible
(“lossy”) compression, see Appendix B.

JPEG Compression of Still Images Page 2

2. TWO LAYERS

Actually, two standards are involved in the application of JPEG in
which we are interested here. The JPEG standard itself defines the
actual data compression algorithm. It is quite flexible, and can readily
be used for original digital images in many different forms (differing,
for example, in the color model used). However, if we are to be able
to freely take a file containing an image whose data is compressed in
JPEG form and actually display or print the image, we must know
those other particulars of the original image.

This is the job of the second standard, JFIF—the JPEG File
Interchange Format specification. It defines those particulars of the
original image. Thus the “JPEG” files —typically with filetype extension
“JPG” —are actually JFIF files.2

3. OPERATION OF JPEG COMPRESSION

3.1 General

In this section, we will describe, in a fairly-technical way, the
operation of the JPEG compression algorithm. The discussion will
presume the most-common modes and options.

3.2 Source data

We will assume that the source image is in the RGB color model, that
is, there is an R, G, and B value for each pixel.

3.3 Gamma precompensation

The first step is to replace R, G, and B with their gamma-
precompensated equivalents, R’ , G’ , and B’ .3 Conceptually, that is
done by applying the following relationship:

45.0' XX = or 2.2' XX =

where X represents R, G, or B, and the range of both X and X’ is from
0 to 1.

2 Often the JPG files we encounter aren’ t true JFIF files, not employing certain
optional ingredients prescribed for JFIF files, but nevertheless honor the original
image definitions of the JFIF standard so that we can view the images without
difficulty.

3 For a discussion of the concept of gamma precompensation, see the companion
article by the same author, Gamma in Film, TV, and Digital Still Camera Systems.

JPEG Compression of Still Images Page 3

In reality, the expression is a bit more complicated, as it provides for a
proportional, not power, relationship for the lower values of R, G, or
B. This is done to optimize overall perceptual performance in the face
of noise components in the original camera outputs.

3.4 Conversion to the Y’ CbCr color model

For each pixel, the value in Y’CbCr (luminance-chrominance) form is
determined. The luminance value, Y’ is calculated by multiplying the
values of R’ , G’ , and B’ by predetermined constants and summing the
products. Then color-difference values (defining chrominance) are
determined this way:

'' YBCb −=

'' YRCr −=

The values Y’ , Cb, and Cr are represented in 8 bits, with a range of 0
to 255.

3.5 Decimation (subsampling) of the chrominance information

The human eye is more sensitive to fine detail presented as changes
in luminance than to changes presented as changes in chromaticity.
We can take advantage of this by conveying the chrominance
information at a lower resolution than the basic resolution of the
image. We do this by not actually conveying the original chrominance
information (Cb, Cr) for each pixel but rather only one Cb, Cr pair for
each four pixels.4 This could be done by just discarding three out of
each four Cb, Cr pairs. A better result is achieved by replacing the Cb,
Cr pairs for four pixels with a new Cb, Cr pair derived from the four
Cb, Cr pairs (or even from a larger span of Cb, Cr pairs). In any case,
the process is referred to as decimating (or subsampling) the
chrominance information.

3.6 Organizing the pixel information into 8 x 8 blocks

The pixel information is now organized into 8 x 8 blocks of contiguous
pixels to prepare for the next step. Each block in effect consists of
three 8 x 8 matrixes (three layers), one each for the Y’ , Cb, and Cr
values.

4 An alternative is to convey one Cb, Cr pair for each two pixels.

JPEG Compression of Still Images Page 4

3.7 Determining the discrete cosine transform (DCT) for each of the
8 x 8 matrixes

Each of the 8 x 8 matrixes carries 64 values (of Y’ , Cb, or Cr) in
spatial form. The plot of values along a horizontal path, or a vertical
path, is like a waveform.

The discrete cosine transform represents each of these waveforms as
a sum of cosine waveforms of 8 different spatial frequencies, the first
having a frequency of 0 (a constant, or “DC”, component), the second
having a frequency half the fundamental frequency, which is a
frequency of one cycle per the width of the block (8 pixels), and the
remaining six having “harmonic” frequencies of 2 through 7 times half
the fundamental frequency.5

The transform result contains 64 coefficients, each of which
represents the amplitude of a cosine component at one of those
frequencies in the horizontal direction and a cosine component at one
of those frequencies in the vertical direction. For example, one
coefficient gives the amplitude of a “3rd harmonic” cosine waveform
in the horizontal direction and a “5th harmonic” cosine waveform in
the vertical direction.

These coefficients are considered to have a range of -1 to +1, but are
represented as 1023 times the actual value (-1023 to +1023),
expressed in sign-magnitude form as 11 bit numbers.

3.8 Quantizing the sets of DCT coefficients

In order to reduce the amount of information to be conveyed, we take
each of the 64 coefficients in each of the three sets, divide it by a
constant, and round it to the nearest integer, reducing its value and
allowing it to be represented in a smaller number of bits (with
correspondingly less precision). This spoken of as “quantizing"; it is
actually “requantizing” the coefficients, as they were already in
discrete (quantized) form. It is equivalent to rounding the number and
scaling down the result. 6

5 For a detailed discussion of the principles of the discrete cosine transform, see
Appendix ***.

6 We’ re not used to think of rounding by division. As an illustration of why this
works, suppose that in a decimal environment, using only integers, we start with
the value 14659 and divide it by 100. The result (to integer precision) is 147. If we
know at the receiving end that we divided it by 100, we know that this really means

JPEG Compression of Still Images Page 5

The quantizing constants differ among the 64 coefficients, and are
prescribed by two separate tables, one for the quantizing of the
coefficients derived from the Y’ matrix and one for the quantizing of
the coefficients derived from the Cb and Cr matrixes.

The pattern in the table is one in which the constants are higher
(leading to a more severe “rounding”) for the coefficients representing
the higher-spatial-frequency components. The higher frequency
components are less important to the eye’ s ability to interpret the
image that will eventually be reconstructed, and thus we can afford to
round them more severely in the interest of reducing the amount of
data in the file.

It is this quantizing process that is responsible for most of the
reduction in the size of the compressed image file.

In most cases, owing to the typically-smaller range of amplitudes of
the higher-frequency components before quantizing, many of the
higher-frequency coefficients will be driven to zero by the quantizing
process. In a later step, we will see that, through clever coding, only a
tiny amount of information is required to convey a bunch of zero
values.

When we choose a “quality” level for JPEG compression, the encoder
scales the quantization constants up or down by the same amount for
all entries in both tables. The standard set of values is associated with
“50% quality”. If we choose a “lower” quality value, these constants
are all bumped up from those standard values, and thus all
coefficients are given a more stringent rounding (requiring fewer bits
to convey) and more of them will be driven to zero (requiring really
few bits to convey).

3.9 Reordering the DCT coefficients

For each of the three sets of 64 DCT coefficients (for Y’ , Cb,. and
Cr), the coefficients are now put in a sequence described by a zig-zag
path across the DCT output matrix. The purpose is to put the
coefficients describing the higher-frequency components (the ones
most likely to be driven to zero during quantization) into adjacent
positions, in preparation for the next step.

14700. Thus we have in effect rounded the number to the nearest 100, but did it in
such a way that we can convey it in only 3 bits instead of 5.

JPEG Compression of Still Images Page 6

3.10 Run-length encoding of the zero-value coefficients

After the reordering in the previous step, we will typically have long
strings of consecutive 0 values. We can convey these economically
by merely stating, in effect, for example, “13 zeroes next”, a concept
described as run-length encoding (RLE). Four bits are used to tell the
number of zeroes in a run, allowing up to 16 consecutive zeros to be
thus represented. If there are more than 16 in a row, we say, in
effect, for example, “16 zeros next, 16 zeros next, 7 zeros next.”

3.11 Recognition of the variable significant length of the non-zero
coefficient values.

The values of the coefficients, (both before and after quantizing) are
stated in an 11-bit sign-magnitude form, the rightmost bit indicating
the sign. The value can range from -1023 to +1023. If a coefficient,
after quantizing, has a value of +3, it can be represented in 3
significant bits: 111 (“11+”). However, if it has a value of –214, it
requires 9 significant bits: 110101100 (“11010110 –“).

If we take advantage of this, and only include significant bits (strip all
leading zeroes) in the bitstream, we can reduce the average number of
bits needed to represent a non-zero coefficient. However, to do this,
we must know how many bits are involved, so the decoder will know
how many of the consecutive bits form one value. To allow this, we
prefix the actual value with a four-bit “length” indicator.

3.12 Forming the bit stream

Every non-zero value is considered to be preceded by a string of zero
values, whose length may, however, be zero (if in fact a non-zero
value immediately follows another one).

The bit stream at this point is built up of “phrases”, one for each
non-zero value, made up this way:

• 4 bits telling the number of zero values preceding this non-zero
value (could be zero)

• 4 bits (the “length indicator”) giving the number of bits
representing the non-zero value

• That number of bits, representing the non-zero value.

3.13 Huffman coding of the prefix

If we look at the first 8 bits of the above phrase (the “prefix”), we
find that not all 256 possible values occur with equal probability. To

JPEG Compression of Still Images Page 7

exploit this, we code that 8-bit group using Huffman coding.7 Under
this scheme, the 8 bit group is represented with a variable length
code, sometimes involving more than 8 bits, but most often involving
substantially less than 8. Thus the bitstream is further reduced in size.
No further prefix is needed to identify the length of the Huffman code
word; its length can be determined from its structure (certain bits of
the codeword are in effect devoted to this function).

Since so many of the non-zero code words are small, their average
length is also small, and so the 8-bit prefix byte for each represents a
substantial fraction of the entire bit stream at this point. Thus, the
reduction in the average size of the prefix through Huffman encoding
yields a significant further reduction in the overall size of the data set.

3.14 Put it all together

Each of the bitstreams formed as described above (one for Y’ , one for
CB, and Cr) is packed into bytes, and the larger-scale structure of the
compressed data set is assembled.

3.15 Encapsulate it

The entire JPEG-compressed data set is now provided with an
appropriate overall header and other housekeeping fields according to
the JFIF specification, yielding our JPG file.

7 For a discussion of Huffman coding, see Appendix ***.

JPEG Compression of Still Images Page 8

APPENDIX A

Understanding the Discrete Cosine Transform

INTRODUCTION

The discrete cosine transform (DCT) is a way of representing a
“waveform” which exists in the time or space domain with an
alternative representation in the frequency domain. A waveform
represented in this way can be manipulated in ways which are
advantageous in such matters as data compression.

In this appendix, we will describe the DCT and explain how it works.

BACKGROUND

First, for the benefits of readers who may not be familiar with some of
the underlying technical concepts, we will review a number of those
concepts.

Frequency

If we have an electrical “signal”, a plot of its instantaneous voltage
against time is called the waveform of the signal. If that waveform
repeatedly follows a certain pattern, indefinitely, it is said to be a
periodic waveform. The rate at which the pattern repeats is said to be
the frequency of the waveform. It is usually measured in units of
cycles per second, a unit for which there is a special name, the hertz
(abbreviated Hz)8.

In the strict sense, the concept of a frequency for a waveform only
applies to waveforms of a certain shape, one which is identical to the
plot of the trigonometric sine of an angle plotted against the angle.
Such waveforms are said to be sine waves, or to be sinusoidal.

Interestingly enough, when sinusoidal waveforms are represented
mathematically, the representation is most often not in terms of the
sine function but rather its cousin the cosine function. The cosine

8 The unit is named in honor of Heinrich Hertz, the noted German physicist.
According to the protocols of the International System of Units (the codification of
the modern “metric system”), a unit based on the name of a person is not
capitalized (each is, after all, a unit, not a person’ s name) but the abbreviation is
capitalized!

JPEG Compression of Still Images Page 9

function has the same shape as the sine function, but starts 90°
earlier in terms of angle. (The waveform represented, though, is
nevertheless spoken of in most cases as a “sine wave”.)

Spatial frequency

We have so far been talking about waveforms that occur in time.
Waveforms can also occur in space.

Suppose we follow a path across the width of a piece of corrugated
roofing and plot its height (above some reference surface) against the
distance along the path. This plot is also a waveform, but we say it is
in the space domain rather than the time domain.

If the pattern of height repeats, it is a periodic waveform, and thus
can be said to have a frequency. In this case, the frequency is
expressed in units of cycles per foot (or some other unit of length).

Such a frequency is said to be a spatial frequency (“spatial” meaning
“pertaining to space”). By contrast, the type of frequency we
discussed earlier can be called a temporal frequency (“temporal”
meaning “pertaining to time”). When frequency is mentioned without
a modifier such as temporal or spatial, by convention it is temporal
frequency that is meant.

The Fourier series

If we have a period waveform that is not sinusoidal, it can be shown
that it may be considered as made up of the sum of two or more
“component” sine waves, having frequencies that are integer
multiples of the rate of recurrence of the waveform, each one having
a certain amplitude (size) and phase angle (a property that describes
how the waveform’ s time reference compares to the time reference of
the other component waveforms).

The component whose frequency is the rate of recurrence of the
waveform is said to be the fundamental component, and its frequency
is said to be the fundamental frequency of the waveform. The
components whose frequencies are higher integer multiples of the
fundamental frequency are said to be harmonics, and their frequencies
are said to be harmonic frequencies.

There may also be a component at a frequency of zero, called the DC
component. If that component were plotted, it would be a straight
horizontal line, representing a constant voltage, just like a direct-
current (thus its name). The value of this component is actually the
average of the value of the waveform over its cycle.

JPEG Compression of Still Images Page 10

The representation of an arbitrary periodic waveform by a set of
sinusoidal components of harmonically-related frequency is called the
Fourier series representation of the waveform.

We say that the waveform itself exists in the time domain, but its
description as a Fourier series is in the frequency domain.

In the case of certain waveforms, especially those with “sharp
corners” (such as the so-called “square wave”), the Fourier series
representation comprises an infinite number of components, with
frequencies running to infinity.

Note that these concepts are equally applicable to waveforms existing
in the time domain or the space domain. The units of the frequency
scales of course differ between the two situations.

The Fourier transform

If we have a waveform which does not repeat the same pattern
forever (actually, the mathematical requirement is that it also has been
repeating since the infinite past!), or for which we only have
knowledge over a limited time period, we cannot represent it with a
Fourier series. (Since the components of a Fourier series go on
forever, the waveform that they collectively represent would go on
forever, and that isn’ t what we have here!)

We can, however, represent such a waveform in the frequency
domain by means of its Fourier transform. That is a plot, against
frequency, of the content of the waveform in terms of cosine waves
of different frequency. Here, these components aren’ t evenly spaced
in frequency, as in the case of a Fourier series representation of a
periodic waveform. In fact, in the typical case, they are “continuous”
over a certain range—th ere are an infinite number of components,
spaced infinitely closely together in frequency, and perhaps extending
to infinite frequency as well.

What about the phase of the component cosine waves? It is important
here as it was for the Fourier series representation. In fact, a complete
Fourier transform representation of a waveform consists of two plots
against frequency, one showing the variation in amplitude of the
components and one showing the variation of phase.

The discrete Fourier transform

The waveforms we have been presuming so far are “continuous”—
their instantaneous voltage is defined for any instant of time we can

JPEG Compression of Still Images Page 11

imagine (over the “time window” for which we have visibility of the
waveform).

In digital technology, we have waveforms in discrete form, their
amplitude described to us only at periodic instants. This is often
described as a “sampled” representation.

In this setting, the job of the Fourier transform in giving us a
“frequency domain” representation of a waveform we know in the
time (or space) domain is taken over by its cousin, the discrete Fourier
transform (DFT). Its result is a series of coefficients, each describing
the amplitude and phase of a sinusoidal component at an integer
multiples of the “fundamental frequency”, the frequency such that
one cycle of it would last as long as the length of the waveform
sequence. (The first of those, as with the Fourier series, is value of
the “zero-frequency”, or DC, component.)

If we have a signal window embracing 16 samples of the original
waveform, the DFT will consist of 8 components, the DC component
and sinusoidal components at frequencies of 1 through 7 times the
“fundamental frequency”. In general, each component is represented
by two coefficients (describing amplitude and phase). For the “O”
(DC) component, phase is not meaningful. For the top component, the
phase is always 0, and no coefficient for its phase is required. Thus
there are a total of 16 coefficients in the transform.

For this to work well, it is necessary that the length of the sequence
(the number of sample values describing it) be an integral power of
two (2, 4, 8, 16, etc.). The number of coefficients will always be the
same as the number of points in the sequence.

THE DISCRETE COSINE TRANSFER

A close relative to the discrete Fourier transform is the discrete cosine
transform (DCT). It is used in the same circumstances as the DFT. It
differs in that the coefficients do not describe both the amplitude and
phase of the individual harmonically-related components, but rather
the amplitude only of components of fixed phase, about twice as
many of them as in the case of the DFT.

If we have a waveform sequence embracing 16 samples of the
original waveform, the DCT will consist of 16 coefficients (just as in
the case of the DFT). One describes the amplitude of the DC
(zero-frequency) component and 15 describe the amplitude of
components with frequencies ranging from 1 to 15 times the
“fundamental frequency”. In this case, the fundamental frequency is

JPEG Compression of Still Images Page 12

the frequency for which one cycle is twice the length of the
sequence. No coefficients are required to indicate the phase of the
components: all have a fixed phase. The fixed phase is not zero; it is
in fact positive and its size is half the spacing of the original sample
points. As a result, the reference point of each of the cosine waves
(its first “1” value) is “one-half tick” before the beginning of the
sequence being transformed.

The 2-dimensional discrete cosine transform

We have so far talked in terms of a “waveform sequence” which
might be part of a horizontal “pass” across a digital image9. But our
image is actually two-dimensional. Patterns of pixel values often
change in consistent ways vertically and horizontally. We can exploit
this by using a “2-dimensional” discrete cosine transform.

Suppose now that we have a “window” on the image that is 8 pixels
wide and 8 pixels high —64 values altogether. We can apply the 2-
dimensional DCT to this “block” of values. The output of the
transform is 64 coefficients. Each of these coefficients tells us the
amplitude of two cosine wave components: a component at one
frequency pertaining to the overall change in pixel values as we move
from left to right across the block, and a component at one frequency
pertaining to the overall change in pixel values as we move from top
to bottom across the block. The frequencies of the components
include zero (the DC component) and frequencies of from 1 to 7 times
the fundamental frequency.

A particular coefficient, for example, tells the amplitude applicable to
both a cosine-wave component at, say, 3 times the fundamental
frequency, applicable to the horizontal patterns of pixels in all 8 rows,
and to a cosine-wave component at, say, 6 times the fundamental
frequency, applicable to the vertical patterns of pixels in all 8
columns.

With this approach, the 2-dimensional DCT of an 8x8 pixel array from
an image (64 points) will have 64 coefficients. If we had treated the
64 original pixels as 8 strings of 8 pixels, each with a separate (one-
dimensional) DCT, each DCT would have 8 coefficients, a total of 64.

What then is the advantage of the 2-dimensional approach. If the
transform is used on image data (likely as a step of an image data
compression system, such as JPEG), then for typical data:

9 For one particular property of the pixels, for example Y’ (luminance)

JPEG Compression of Still Images Page 13

• a greater fraction of the 2-dimensional DCT coefficients will be
smaller than for the coefficients of eight 1-dimensional DCTs

• a greater fraction will be amenable to significant requantizing (so
that they can be acceptably represented in fewer bits)

• the coefficients that become zero when requantized will “cluster”
better within this larger body of coefficients, allowing them to be
compactly represented through run-length encoding

All of these lead to improvements in the degree of data compression
that is achieved by the JPEG compression system.

This figure shows the patterns which are implied by each of the 64
DCT coefficients:

Each little figure shows, for each of the 64 coefficients, the pattern,
vertically and horizontally, that would be given to the 8x8 pixel grid in
the reconstructed image if that particular coefficient had its maximum
value (+1) and the other coefficients were zero.

JPEG Compression of Still Images Page 14

Note that although the underlying vertical and horizontal patterns in
these 2-dimensional patterns are described as cosine waves, they
actually only exist at 8 discrete points across the span of the grid, one
for each pixel position. One result of this is that for the patterns with
frequencies of 1, 2, and 4 times the fundamental frequency10 (for
example, top row, patterns 2, 3, and 5 from the left), we can easily
see the underlying cosine wave; for patterns with frequencies at other
multiples of the fundamental frequency, the underlying cosine wave is
hard to visualize. For example, the cosine nature of the rightmost
pattern in the top row, at 7 times the fundamental frequency, is hard
to visualize when we only see its value at intervals of 7/16 of its
period!

#

10 Recall that in this case the fundamental frequency is that for which one cycle
lasts twice the width of the block; that is, the block spans one half cycle of the
fundamental frequency.

JPEG Compression of Still Images Page 15

APPENDIX A

Principles of Data Compression

INTRODUCTION

Compression, in the sense of interest here, refers to taking a body of
data and replacing it with another smaller body of data for storage or
transmission such that the original data can later be reconstructed,
either precisely or not. An important application of this concept is in
the field of digital still photography, where substantial reductions in
the size of the file originally generated to capture an image are critical
to practical operation. Here we review the concepts and principles of
data compression, and give a brief overview of the approach used for
digital still images.

REVERSIBLE COMPRESSION

With reversible compression, a body of data is replaced with a smaller
body of data from which the original body can later be reconstructed
precisely. Compression of this type is mandatory for data files that
carry computer software. Even a single bit changed in the
reconstructed file can make the file unusable. Such compression is
also usually demanded for computer document files (word processing
documents, spreadsheets, engineering drawing graphic files, and so
forth).

Today, reversible compression is usually called “lossless
compression”, a term which I consider unfortunate. I’ ll talk about that
in a separate section of this article.

How is such compression possible? It exploits redundancy in the
original body of data (which is often called the message, a term that
we will continue to use here) in a specific technical sense: redundancy
is the degree to which the data in the message departs from having
the same statistical properties as would a random stream of 1’ s and
0’ s. For example, in a truly random data stream there will be equal
numbers of 1’ s and 0’s; over all pairs of bits (adjacent or not) there
will be equal numbers of “00”, “01”, “10”, and “11”; over all groups
of three bits (adjacent or not) there will be equal numbers of “000”,
“001, “010”, and so forth.

JPEG Compression of Still Images Page 16

Huffman coding

The compression system devised by D.A. Huffman exploits that
situation. It uses the following principle.

Suppose we are talking about text files carrying general text in the
English language. Each character is represented by a fixed 8-bit code
word. We know that, averaged over a lot of text, the character “e”
will occur substantially more frequently than the character “Z”, and
that substantially more frequently than the character “Ð” (thorn) (used
in Icelandic words).

Suppose that, instead of giving each of the characters a fixed 8- bit
representation, we give them code words of different lengths. We
give the most-frequently-appearing characters short code words
(shorter than 8 bits) and the less-frequently-appearing characters
longer code words (often longer than 8 bits). As a result, the average
number of bits per character will be less than 8.

Huffman’ s technique gives us an orderly procedure for designing such
a code. The code is defined in “tree” form. The decoder needs no
special clues to determine how many bits of the data stream make up
the code word being received —as each bit is encountered, the
decoder progresses through the tree until it encounters an “end
node”, which corresponds to one of the characters, which is noted.
The next bit is of necessity the first bit of the next code word.

Suppose, however, that in a particular application, the distribution of
characters is not consistent with the distribution in English text (the
data may in fact not represent text at all), and may in fact vary from
message to message within the application.

If nevertheless, in any particular message, certain characters appear
more frequently than others, we can still use our technique by adding
a new feature. When a message is submitted for compression, we
first survey it to determine how many times each character occurs (if
at all). We then design a custom recoding scheme, again with the
most-frequent characters (for this message) given the shortest codes.

So that the “receiver” can decode this message, we put a description
of this particular code scheme in a table at the beginning of the
recoded message. Although that adds to the overall length of the file,
especially for longer messages (for which the table is no longer) the
dilution of compression effectiveness is minimal.

JPEG Compression of Still Images Page 17

Run-length encoding

In many types of data, we regularly encounter long strings of the
same value. Here, a compression approach called run-length encoding
can be useful.

For convenience, let us assume a data sequence in which the
elements can be thought of as characters. Suppose we have this
sequence:

aEEEEEEEEkkkMMMMMpppppppZZZ

We could describe it this way, verbally:

One “a”, eight “E”s, three “k”s, five “M”s, seven “p”s, three “Z”s.

In coded form, we might state:

1a8E3k5M7p3Z

a much more compact representation of the original sequence.

NON-REVERSIBLE COMPRESSION

Especially when the “message” does not have much redundancy in
the simple sense we discussed above (such as digital image files),
reversible (“lossless”) compression may not yield much reduction in
message size. But in many such cases we can achieve substantial
compression through the use of non-reversible (“lossy”) compression
systems. In such systems, the data set recovered at the destination is
not identical to the original data set. But (in the case of use for image
encoding) perhaps the image represented by the delivered data differs
from the image represented by the original data in a way that will
hardly be noticed by the receiving viewer.

There are numerous approaches to non-reversible compression. In the
case of data streams representing speech (as in wireless telephone
systems), we replace the original verbatim description of the speech
waveform with what amounts to a script that controls a speech
synthesizer at the destination. While the waveform delivered by the
synthesizer may not appear anything like the original waveform, it will
nevertheless be perceived by the recipient as sounding much like the
original speech.

For digital photographic images, we typically replace the original data
with another form that represents the same image. In that form, we
can reduce the precision with which certain factors are expressed,

JPEG Compression of Still Images Page 18

reducing the number of bits in a way that impacts the delivered image
in a benign way from the perspective of the viewer. The JPEG
compression system, which is the subject of this paper, operates upon
that principle. Its details are covered in the body of the paper.

“REVERSIBLE/NON-REVERSIBLE”—“LOSSLESS/LOSSY”

It is today common to speak of reversible compression processes as
“lossless” and non-reversible ones as “lossy”. The basis of this
notation is the notion that, with non-reversible compression, a part of
the original information is “lost” from the reconstructed file.

I feel that this notation is misleading as to what happens to
information in non-reversible compression. Information is not lost—it
is errored.

If in fact information were being lost, we should be able, at least
conceptually, to quantify how much is being lost. Suppose we begin
with a file representing a 3 million pixel full-color image. For each
pixel, there are three data values, for Y’ , Cb, and Cr—a tot al of 9
million values.

After encoding the file under JPEG and then decoding it, we again
have 9 million values. How many of those are the same as the
corresponding original values? Unless the image has some large areas
of “full black” or “full white”, likely less than 0.5% of the values. If
values that are errored are considered “lost”, then we have lost over
99.5% of the information. Seems hardly worth storing the file!

“But”, you may say, “in most cases, the discrepancy will be small.
Can’ t we take that into account?” Absolutely. There are well-accepted
statistical concepts for assessing errors in a body information. The
result would be reported in terms of RMS error. But RMS error isn’ t a
measure of loss of data; it is a measure of—erro r.

The adoption of the “loss” notion is understandable from the
viewpoint of one whose perspective is the inner details of many
compression systems. For example, in the JPEG compression system,
we quantify the DCT coefficients, in effect discarding some of the
lower-significance bits from the values.11 Isn’ t that “loss of
information”? I suppose so. But remember, when we describe
compression systems, we are trying to characterize the overall result

11 Actually, it isn’ t done exactly that way, but the description is close enough to be
valid for our purpose here.

JPEG Compression of Still Images Page 19

on the reconstructed image (all that matters to the user), and as I just
pointed out, talking there about “loss of information” just doesn’ t fit.

Another area which might seem to justify the use of the “loss” notion
is the decimation (or subsampling) of chrominance data in JPEG. We
do not carry forward the chrominance information (Cb, Cr) for each
pixel in the image. Rather, we commonly only carry forward one set
of chrominance information for each four pixels.

If we did this in an “agricultural” way, we would take the
chrominance pairs for four pixels and just discard three of them.
Surely that constitutes a loss of information.

Indeed. But we rarely do it that way. Instead, for each four pixels, we
encode a single chrominance pair derived from the values from four
pixels, or even from a larger group, following some interpolation
algorithm. None of the original chrominance pairs are included in the
compressed file. When the image is decoded, there will be
chrominance pairs for each pixel. None of them will (except by
chance) be the same as in the original image. So how much of the
chrominance information have we “lost”? Evidently all of it!

Thus we see that the notion of the “loss” of information under
compression, while catchy, is not meaningful. Of course, the
terminology is well established, and will certainly prevail. But it is
important that we do not take its implications literally.

#

