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ABSTRACT 

 

Extension tubes are devices that are placed between an 
interchangeable camera lens and the camera body to shift the focusing 
range of the camera to embrace shorter subject distances. The object 
is generally to achieve a greater image magnification than can be had 
with the lens in its normal situation. In this article we review the 
optical principles involved with the use of extension tubes, and give 
various equations useful in their application. 

INTRODUCTION 

Camera lenses (whether of the interchangeable type or not) have a 
range of the distance at which they allow the camera can be focused.1 
Often we are interested in focusing at a smaller distance with a certain 
lens than the normal minimum. This most commonly arises in 
connection with the desire for a greater image magnification than the 
camera exhibits with the lens at its closest focusing distance setting. 

MAGNIFICATION 

The image magnification of a camera2 is defined as the ratio of a linear 
dimension of a feature of the image to the linear dimension of the 
same feature of the object itself. (Canon prefers to use the term 
reproduction ratio, a term originally derived from copy camera 
practice.) The magnification is in fact the ratio of (a) the distance to 
the image (measured from the 2nd nodal point of the lens) to (b) the 
distance to the subject (measured from the 1st nodal point of the 
lens).3 

                                      

1 Note that a lens cannot be focused at a certain distance, only a camera of which 
the lens is a part. 

2 Strictly speaking,  a lens does not (by itself) have a magnification, only a camera. 

3 We will speak here both of the nodal points of a lens and its principal points. In all 
cases of interest to us, the two nodal points fall at exactly the same location as the 
two principal points. But we will selectively use the two terms because the two 
pairs of points have different significance in the optical theory of camera operation. 
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Because of the relationships of the basic focus equation, we can also 
say that the magnification depends on the focal length of the lens and 
the distance to the subject (again measured from the 1st nodal point 
of the lens). 

The greatest magnification is ordinarily attained at the closest focus 
distance of the camera. 

THE EXTENSION TUBE 

A direct way to increase the maximum magnification of the camera 
with a certain lens is to physically move the entire lens outward from 
the camera body. If the lens is of the interchangeable type (as is 
common with cameras of the single lens reflex—SLR—type, but 
uncommon with cameras of other types), we can do this by inserting 
a special device, called an extension tube, between the lens and its 
mount on the camera body. The tube of course must be designed to 
cater for the specific type of lens mount in use, emulating the lens 
mount of the camera on its forward end and the fitting on the rear of 
the lens on its rear end. In addition, some extension tubes have 
provisions for carrying through them the electrical and/or mechanical 
connections between the lens and the camera body, allowing retention 
of various automatic features of the camera system. 

The most common type of extension tube (and the only type we will 
discuss here) has no optical elements in it—it is just an empty tube. It 
does all its work by shifting the available range of distance from the 
2nd nodal point of the lens to the film or digital sensor. 

MAGNIFICATION WITH AN EXTENSION TUBE IN PLACE 

If we know the magnification the lens (without an extension tube) 
provides when at some focus setting (including, but not necessarily, 
closest focus), we can readily calculate the magnification it will give, 
at that same focus setting, with an extension tube in place: 

f
L

mm '   4 (1) 

where m’ (read “m prime”) is the magnification with the extension 
tube in place, m is the magnification with no extension tube (but the 
lens at the same focus setting), L is the “length” of the extension tube 

                                      

4 This equation is derived in Appendix A. 
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(the amount by which it moves the lens forward), and f is the focal 
length of the lens (L and f in consistent units). 

Note that this is equally workable whether the lens focus setting 
involved is its “closest” one or not. 

EFFECT ON THE RANGE OF FOCUS DISTANCE 

With an extension tube in place, both the “shortest” and “farthest” 
focus distances are reduced from those provided by the lens in its 
normal use. The former is of course usually the object of the use of 
the extension tube; the latter is just a side effect (sometimes 
troublesome). 

Calculation of new minimum and maximum focus distance 

Often we wish to know the actual minimum and maximum distance to 
which a camera can be focused with an extension tube in place. 
These calculations involve the classical “Gaussian” focus equation, 
which in its fundamental form is: 

fQP
111

  (2) 

where P is the distance to the object, measured from the 1st principal 
point of the lens; Q is the distance to the image (at the film or sensor, 
if the camera has been “focused” on the object) measured from the 
2nd principal point of the lens; and f is the focal length of the lens, all 
in consistent units. 

We can solve this for P in terms of Q and f: 

QfP
111

  (3) 

Qf
fQ

P



1

 (4) 

fQ
Qf

P


  (5) 

Similarly, we can solve for Q in terms of P and f, and get: 

fP
Pf

Q


  (6) 
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Now, with those in hand, let’s examine the situation in which the lens 
itself is set to its normal minimum focus distance, P1. Then the 
distance to the image, Q1, will be given by: 

fP
fP

Q



1

1
1  (7) 

If we then insert an extension tube of length L, its effect is to increase 
Q, such that: 

LQQ  11'  (8) 

where Q1’ is the new value of Q. 

We can then calculate the new actual minimum focusing distance 
(again measured to the 1st principal point5) thus: 

fQ
fQ

P



'
'

'
1

1
1  (9) 

There is of course a consolidated solution for P1’ in terms of P1, L, and 
f, but it is very cumbersome, and in practice it is easier to calculate 
the result in steps, as shown above. 

Calculation of the new maximum focus distance proceeds along 
similar lines. We assume that the maximum focus distance with the 
lens alone is infinite (P2=). Then: 

fQ 2  (10) 

With the extension tube in place: 

LfQ '2  (11) 

We can then calculate the corresponding focus distance (the new 
maximum focus distance) thus: 

fQ
fQ

P



'
'

'
2

2
2  (12) 

                                      

5 Note that when “minimum focusing distance” is stated for a lens on a certain 
camera, it is usually stated from the object to the focal plane. We cannot work with 
that here since it depends on a parameter of the lens we do not normally know. 
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EFFECT ON EXPOSURE 

We normally treat the f-number of a lens as the indicator of its effect 
on exposure. In fact, it is only strictly that for the situation in which 
the lens is focused at infinity (or, in a practical sense, in which it is 
focused at a distance that is very large compared to the focal length). 

Thus, when we focus at a shorter distance, the exposure impact of 
the lens will not be that suggested by the f-number—in fact, it will be 
a lesser exposure impact. 

This effect often becomes of importance when we use an extension 
tube, since we will then in fact be focusing at a shorter distance than 
we could have before. 

It is common to attribute this decline in exposure performance to the 
extension tube, but in fact it is a creature of focus at a short 
distance—however we bring that about. (Many lenses can focus at 
rather short distances without an extension tube, and this 
phenomenon occurs significantly there just the same.) 

Often the term “loss of light” is used to describe this effect, but that 
is not technically apt. No light is lost as we focus at closer and closer 
distances—the same amount of luminous flux is collected from any 
“patch” of the scene (for a given luminance of the patch, of course). 
But when we focus at a closer distance, the image of any given 
subject patch is larger (this is why we focus at a close distance for 
“macro” work), and thus the collected luminous flux from a particular 
subject patch is spread over a larger area on the film or sensor. This 
constitutes a decline in the illuminance on the film or sensor, which is 
(along with exposure time) the factor to which the film or sensor 
responds. 

Because we are used to thinking of the exposure impact of a lens in 
terms of f-number, it is often handiest for us to reckon the exposure 
impact of a lens in a close focus situation in terms of an “effective 
f-number”. This is the f-number that, for a lens focused at infinity, 
would produce the same exposure impact that our lens exhibits when 
focused at our actual subject distance. We will see how to reckon 
effective f-number after we dispose of a little complication. 

Pupil magnification 

The entrance pupil of a lens is the “port” through which it collects 
light. It is the virtual image of the actual physical  aperture stop (iris or 
diaphragm) as seen from in front of the lens. If we look at a typical 
lens from the front, we may think we see the aperture stop, but in 
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fact we see its virtual image. It is not in the same place that the stop 
actually is, and its diameter is not that of the physical stop (all this 
because of the refractive effect of the lens elements in front of the 
aperture stop). 

It is in fact the diameter of the entrance pupil—not the diameter of the 
physical aperture stop—that is used in the reckoning of the f/number 
of the lens. 

The exit pupil is the “port” through which the lens discharges light. It 
is the virtual image of the actual physical aperture stop as seen from 
behind the lens. 

In a symmetrical lens design, the entrance pupil is located at the 1st 
principal point of the lens, and the exit pupil is located at the 2nd 
principal point. The two pupils have the same diameter (not generally 
the same as the diameter of the physical aperture stop). 

But often in real lens designs, the two pupils are not located at the 
two principal points. If the entrance pupil is displaced a certain 
distance in a certain direction from the 1st principal point, then the 
exit pupil must be displaced a certain (different) distance, in the same 
direction, from the 2nd principal point. And for any given situation of 
displacement, the diameters of the exit and entrance pupils have a 
certain ratio. That ratio is called the pupil magnification. By stating it, 
we state the whole story of the locations of the pupils. 

When we predict the actual effect of focus at a close distance on the 
exposure impact of the lens (perhaps by calculating an “effective 
f-number), we must take the locations of the pupils into account. We 
can do that by including the pupil magnification in the formula. But 
very rarely do we know the pupil magnification of the lens (or the 
actual locations of the pupils). Thus we most often just have to ignore 
the effect of pupil magnification, and calculate the effective f-number 
as though the pupil magnification were 1 (that is, as if the two pupils 
were actually located at the two principal points of the lens). 

The formula for effective f-number we will develop shortly is based on 
the assumption that there is no displacement of the pupils. 

Calculating the effective f-number 

If (as discussed just above) we ignore the possibility of a pupil 
magnification different from 1, the effective f-number of a lens is 
given by: 

 mnn  1'  (13) 
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where n’ is the effective f-number, n is the actual f-number, and m is 
the magnification of the lens for an object at the current focus 
distance (whether focus at that distance is attained with the help of 
an extension tube or not). 

Note, as a credibility check, if we consider focus at a large distance, 
m becomes very small, and thus n’ becomes nearly n (essentially, our 
usual assumption as to the meaning of the f-number of a lens). 

Note also that for the focus distance at which the magnification 
become 1 (1:1), for some reason an important “landmark” in 
macrophotography, the effective f-number becomes twice the real 
f-number. This represents a decline of exposure impact of 2 stops 
from that suggested by the f-number. 

The bellows factor 

Suppose we define a constant, b, this way: 

mb  1  (14) 

Then equation 13 can be rewritten as: 

bnn '  (15) 

The factor b, which capsulizes the effect of a short focus distance 
upon effective f-number, is often called the “bellows factor”. The 
name comes from cameras with a bellows between the lens and the 
body proper. The focus distance in such a camera varies with the 
position of the lens, and thus with the extension of the bellows. Thus 
the factor b, which varies with focus distance, was attributed to 
bellows extension, and was named accordingly. 

Note, as a credibility check, that for focus at an infinite distance (for 
which m is zero), b will become 1, again indicating that the effective 
f/number in that situation is just the actual f-number. 

Effect on other uses of the f-number 

The f-number of a lens appears in many photographic calculations (for 
example, depth of field calculations). In most cases, it is in fact the 
actual f-number, n, that is to be used, even in cases of close focus, 
not the “effective f-number”, n’. (Of course, focus distance plays a 
role in those calculations, but that is taken into account by other parts 
of the equations involved.) 
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A CAUTION 

Classical camera lenses were “focused” by moving the entire lens 
(often on a bellows). Some more modern lenses of are focused by 
moving all the lens elements together (essentially moving the entire 
“lens” within the lens housing). 

However, in most modern lenses, focusing is attained by moving only 
one or more of the groups of lens elements. This is done to meet 
various design objectives. 

For certain of those focusing schemes, the actual focal length changes 
as the focusing setting is changed. In the case of zoom lenses, where 
we want to be able to change the focal length, for a given setting of 
the focal length control the actual focal length may vary with changes 
in the focusing setting. 

As a matter of industry practice, the focal length of a lens (focal 
length range, for a zoom  lens), is stated for focus at infinity (but this 
is not always mentioned in the lens specifications). 

Commonly, for the “closest” focusing setting, the focal length is less 
than the rated focal length. 

Of course, moving the entire lens (housing and all) by the insertion of 
an extension tube has no effect on the focal length of the lens. But 
since we commonly use an extension tube in a situation in which the 
lens is also set to its closest (or almost closest) focusing setting, we 
may in fact be working with a focal length not that marked on the lens 
(or the lens zoom control). 

Since focal length appears in equation 1, a consequence can be that 
the attainable magnification with an extension tube in place may not 
be as great as that expected. 

# 
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Appendix A 

Derivation of the equation for the effect of an extension tube 

 

Here we derive equation 1, restated here for reference: 

f
L

mm '  [1] 

The image magnification of a lens is given by: 

P
Q

m   (16) 

where P is the distance to the object, measured from the 1st principal 
point of the lens, and Q is the distance to the image (at the film or 
sensor, if the camera has been “focused” on the object) measured 
from the 2nd principal point of the lens. 

P and Q are related by the basic focus equation, which we here see in 
its "Gaussian" form: 

fQP
111

  [2] 

Or, solved for P: 

fQ
Qf

P


  [5] 

Substituting into equation 16, we get: 

Qf
fQQ

m
)( 

  (17) 

And simplifying we get: 

f
fQ

m
)( 

  (18) 

Solving for Q, we get: 

fmfQ   (19) 

which will be useful shortly (as we will not want Q in our final result). 
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If we insert an extension tube of "length" L, then we have a new 
value of Q, we will call Q', thus: 

LQQ '  (20) 

We can then substitute that in equation 18 and calculate the new 
magnification, m': 

f
fLQ

m


'  (21) 

Then substituting for Q from equation 19, we get 

f
fLfmf

m


'  (22) 

or 

f
Lmf

m


'  (23) 

or 

f
L

mm '  (24) 

Quod erat demonstrandum. 

# 

 

 

 

 

 

If we know Q, we can calculate P. We do that here for our new value 
of Q (that is, Q'), thus getting the new value of P (that is, P'), the new 
distance from the plane of focus to the 1st principal point of the lens: 

fQ

fQ
P




'

'
'  (25) 

Substituting for Q' from equation ***, we get: 
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fLQ

fLQ
P





)(

)(
'  (26) 

Substituting this value of P' into equation ***, we get: 

))(

))((
'

fLQ

fLQQ
m




  (27) 

Dividing top and bottom by (Q+L), we get: 

f

LQfQ
m

))/(
'


  (28) 

 

 

 

 


