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ABSTRACT 

A cubic Bézier curve is a two-dimensional curve that is completely 
defined by the locations of four points, two of which are the endpoints 
of the curve. The cubic Bézier curve is the basic ingredient of the 
curve constructing capacities of many technical illustration, CAD, and 
other graphic programs, and also has application to the description of 
type face glyphs. More complex curves may be created as cubic 
Bézier splines, which comprise two or more cubic Bézier curves, joined 
together (most commonly so the joint is smooth). In this article we 
describe the concept of the cubic Bézier curve, first in an intuitive 
way, then through a geometric construction procedure, and finally in 
terms of mathematical functions. Finally, we mention the quadratic 
Bézier curve, a special (and simpler) subset of the cubic Bézier curve, 
as well as the linear Bézier curve and Bézier curves of higher order. 
We also discuss the distinction between paths and strokes, concepts 
pertaining to the use of Bézier curves in illustration and image editing 
software. 

INTRODUCTION 

In many computer graphic applications, including technical illustration 
programs, CAD programs, and so forth, the user must be able to 
define curves. Ideally, everything in these programs is defined in what 
is sometimes spoken of as vector terms; that is, as a mathematical-
geometric description, rather than as a collection of pixels. In this 
way, the path can be scaled or rotated without loss of precision due 
to the discrete nature of a pixel representation. The vector 
representation is also much better for performing various operations, 
such as determining the precise point of intersection between two 
paths, or adjusting the shape of a curve. 

Many such applications today use as their basic curve ingredient a 
type of curve known as the cubic Bezier curve. Such a curve is 
completely and rigorously defined by the locations of four points 
(called control points), two of which are in fact the endpoints of the 
curve. 

Since defining the location of a point requires the value of two 
variables, a cubic Bézier curve is thus defined by eight values. 
Mathematically, we say it has eight degrees of freedom. 
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But we cannot make a cubic Bézier curve any arbitrary shape that we 
might want. An infinite number can be defined, but there are infinitely 
more curves that are not cubic Bézier curves. 

THE DETAILS 

Basic concept 

As we noted, a cubic Bézier curve is completely defined by the 
locations of four points. No other information is needed, and there are 
no opportunities to vary the curve from what is dictated by the points. 

Figure 1 shows a cubic Bézier curve, defined by the four control 
points, P0-P3: 
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Figure 1. Cubic Bézier curve, showing control points 

Control points P0 and P3 are the endpoints of the curve. In the 
notation of many illustration programs, these two control points are 
called anchor points, and the term control point is then used only for 
the points P2 and P3. (This notation is very descriptive, and I will 
generally follow it here to avoid any ambiguity.) 

Points P2 and P3 define the shape of the curve in a way we will see 
shortly. 
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Figure 2. Cubic Bézier curve showing control vectors 
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We often see in our drawing program lines connecting the anchor 
points with the adjacent (that’s in numerical order) control points. 
These lines may be thought of as control vectors. 

Note that these vectors are tangent to the curve at its end points. 
That is, the slope of the curve at the endpoint is the same as the slope 
of the control vector. Said another way, the curve “takes off” from an 
end point initially heading straight for the associated interior control 
point. 

Figure 3 shows this again for a different location of point P1: 
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Figure 3. A different location for P1 

As before, the curve “takes off” from P0 initially in the direction along 
the vector P0-P1. 

Developing the curve itself 

Of course, if we have the four points that define a cubic Bézier curve, 
for this to be useful we must be able to “develop” the actual curve 
they define. 

We can do this in purely mathematical terms (and will later), or with a 
geometric interpretation of the mathematics (which we will do not so 
much later). 

But first, it will be useful to get a conceptual grasp of how the control 
vectors control the shape of the curve, so we will not be surprised by 
the result the geometric and mathematical approaches give us. 

An intuitive outlook: the bug metaphor 

The principle by which these control vectors control the shape of the 
curve may be broadly understood by way of a fanciful metaphor in 
which the curve is the actual path of a little crawling bug. Refer again 
to figure 2. The bug starts off from point P0, and his mission is to get 
to point P3. 
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But as he prepares to set out, he hears a seductive voice from point 
P1, calling: “Over here, over here”. He initially heads straight toward 
the voice, but immediately realizes that his mission is to get to point 
P3. So (perhaps reluctantly—the voice from P1 was very seductive). 
Thus he begins steering away from the bearing to point P1 and toward 
the general direction of point P3. 

The influential power of P1 varies with the length of the vector P0-P1. 
The longer the vector, the greater is the distracting influence on our 
bug. (That seems counterintuitive—we might think, “the ‘siren’ is 
farther away, and its ‘voice’ would be less potent”—but remember 
this is just a metaphor, not a physics model.) 

To see this, we will relocate P1 so that the vector P0-P1 has the same 
direction as in figure 2 but is shorter (figure 4). 
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Figure 4. Shorter vector P0-P1 

Now we see that our little bug much quickly veers from his initial 
course toward P1 than he did under the (greater) influence of P1 in its 
prior location. (His path in that earlier situation is shown in red for 
comparison.) 

Similarly, P2 has an influence on the bug’s course on the right side of 
the figure, as it approaches P3. But the metaphor doesn’t work as 
cleanly in explaining that. It is perhaps best to think of things at the 
P3 end as just being parallel to things at the P0 end—imagine the bug 
leaving P3, bound for P0. 

A RIGOROUS DESCRIPTION 

What we have done so far is broad and qualitative. Now let’s take a 
more rigorous outlook on the shape of the curve. 

Ultimately, we would probably like to have the curve expressed as in 
terms of the values of x and y (the coordinates of any given point on 
the curve) for all possible points along the length of the curve. 
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Parametric functions 

It is in fact very difficult to develop an description of the curve in such 
a form as “y as a function of x”. One deadly complication is that the 
function may well be two- or three-valued—for a given value of a, 
there might be two (or more) values of y (we can see that on the left 
portion of the curve in figure 3). 

But we can handily finesse that and other complications by using a 
parametric function approach. There, we have both x and y as 
separate functions of a dummy variable, usually designated t (said to 
be the parameter of the system of functions). That particular choice of 
symbol reminds us that the dummy variable can be considered time in 
the crawling bug metaphor for the formation of the curve. The entire 
curve is thought of as being “drawn” by the bug while t runs from 0 
to 1 (a period of one unit of time). 

For any given value of t, straightforward algebraic functions will tell us 
the value of x and of y—that is, where the “pencil” is at that “instant” 
in the drawing of the entire curve. (Do not assume that the “pencil” 
moves along the curve at a constant rate in terms of distance per unit 
of this fanciful time scale. We only know that it makes the whole trip 
during the period between t=0 and t=1.) 

The geometric construction model 

This parametric outlook will serve us even if, rather than thinking in 
terms of mathematical functions for x and y, we use a geometric 
construction model. This model is theoretically rigorous; it precisely 
represents the mathematics involved. 

First, we note that at the beginning of the scenario (t=0), the 
corresponding point on the curve is by definition at P0, and at the end 
of the scenario (t=1), the corresponding point on the curve is by 
definition at P3. We will then look at three other points, those for 
t=0.25, t=0.5, and t=0.75. 
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L0.25

t=0.25

 

Figure 5. Geometric construction at t=0.25 
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In figure 5, we do the geometric construction for t=0.25—that is, 
determining the location the “pencil” when it is 1/4 of the way along 
the curve in terms of our fanciful timeline. 

• We draw the lines P0-P1, P1-P2, and P2-P3 (the blue lines). 

• We locate point J00.25 on line P0-P1, 0.25 of the way from P0 to P1. 

• We locate point J10.25 on line P1-P2, 0.25 of the way from P1 to P2. 

• We locate point J20.25 on line P2-P2, 0.25 of the way from P2 to P3. 

• We draw lines from J00.25 to J10.25, and from J10.25 to J20.25 (red). 

• We locate point K00.25 on line J00.25-J10.25, 0.25 of the way from 
J00.25 to J10.25. 

• We locate point K10.25 on line J10.25-J10.25, 0.25 of the way from 
J10.25 to J20.25. 

• We draw a line from K00.25 to K10.25 (green). 

• We locate point L10.25 on line K10.25-K10.25, 0.25 of the way from 
K10.25 to K20.25. 

Point L10.25 is the point on the curve that would be “drawn” at t-0.25. 

Now that we have seen the process at work, let’s do the same 
construction at t=0.5 and t=0.75 (figure 6). I’ll spare you the 
blow-by-blow description. 

P0

P1

P2

P3

J00.5

J10.5

J20.5

K00.5
K10.5

L0.5

t=0.5
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Figure 6. Geometric construction at t=0.5 and t=0.75 

Remember that, at each stage of the process, we locate the point that 
is the fraction t along the length of line of interest (first working with 
the blue lines, then the red lines, then the green line). In each case, 
the point Lt that is the final result is the point on the curve where the 
“pencil” would be at time t. 

A wonderful animation of the entire process (as t goes from 0 to 1) 
can be found here: 

http://upload.wikimedia.org/wikipedia/commons/f/ff/Bezier_3_big.gif 
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The analytic outlook 

As we mentioned above, using the parametric outlook, we can 
actually determine, analytically, the x and y coordinates of the point 
on the curve corresponding to any value of t from 0 through 1. The 
calculations of course involve the coordinates of the four control 
points, which we designate x0, y0 (for point P0) through x3, y3 (for 
point P3). 

Then, for any arbitrary value of t (over the range 0-1), the values of 
the coordinates for the corresponding curve point, xt and yt, are given 
by: 

DCtBtAtx  23  HGtFtEty  23  (1a,b) 

where the values of the coefficients A-H are given by: 

0123 33 xxxxA   0123 33 yyyyE   (2a,b) 

012 363 xxxB   012 363 yyyF   (3a,b) 

01 33 xxC   01 33 yyG   (4a,b) 

0xD   0yH   (5a,b) 

These functions are given, with a lovely derivation, in a useful paper 
by Don Lancaster, available here (at this writing): 

 http://www.tinaja.com/glib/cubemath.pdf 

OTHER BÉZIER CURVES 

The Quadratic Bézier Curve 

A simpler curve, actually a special case of the Bézier cubic curve, is 
called the quadratic Bézier curve. Figure 7 shows an example. 

P0

P1

P2

 

Figure 7. Bézier quadratic curve 

It only has three control points, two (P0 and P2) being the endpoints 
of the curve (anchor points). 
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It can accurately be thought of as a Bézier cubic curve in which the 
two control points are at the same place. 

The linear Bézier curve 

A (straight) line segment is the degenerate case of a Bézier curve, 
called a linear Bézier curve. A linear is defined by two anchor points, 
which are its endpoints. But to fit in into the continuum of Bézier 
curves, we can say that its control points lie along the line segment 
itself, at any arbitrary distance we wish to think of. 

In many cases, we consider the control points as lying at zero 
distance—that is, they lie at the anchor points. 

Higher-order Bézier curves 

I the general case, we can have genres of Bézier curves defined by 
any number of points. Of course, these have correspondingly greater 
degrees of freedom, and thus there is more flexibility in the shapes 
that can be described. 

But Bézier curves of order higher than three (i.e., the cubic Bézier 
curve) are rarely used in such areas as graphic illustration. 

BÉZIER SPLINES 

Basic concept 

In order to expand our curve defining capabilities, we can utilize cubic 
Bézier splines1. These are composed of two or more cubic Bézier 
curves (each described by four points, and thus eight numerical 
values), joined together (so there is a control point that is common to 
two adjacent curves), most often in such a way that the joint is 
“smooth” (and there is a mathematical definition of what that means). 
Thus a spline composed of 100 cubic Bézier curves, end-to-end, will 
be defined by 301 points (101 of them anchor points, lying on the 
spline itself), and thus by 602 numerical values. 

P0

P1

P2

P3

P4

P5

P6

 

                                      

1 The term comes from traditional drafting, where curves were often drawn with the 
aid of a deformable bar (traditionally made of lead), called a spline, which the drafter 
would form until it met the “specifications” for the desired curve. 
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Figure 8. Bézier spline (two-segment) 

In figure 8, we see a two-segment Bézier spline (composed of two 
Bézier curves joined end-to-end). The first curve is defined by points 
P0-P3, and the second by points P3-P6 (point P3 being the common 
anchor point, at the “joint” between the two segments). 

Note that in many cases, when we construct a so-called “Bézier 
curve” in a graphics program we are actually constructing a cubic 
Bézier spline. How we “enter” and manipulate these splines is beyond 
the scope of this article. 

Smooth joining 

I spoke just above of the fact that ordinarily, in a cubic Bézier spline, 
the adjacent cubic Bezier curves will be “smoothly joined”. That 
means: 

• The “right” endpoint of one curve must also be the “left” endpoint 
of the adjacent curve—a common anchor point. 

• The common anchor point and the two associated control points 
must lie on a straight line. 

It is not necessary that the two control vectors have the same length. 
(We see this for control vectors P3-P2 and P3-P4 in figure 8). In many 
cases, the program will initially establish the spline so that the paired 
control vectors at each endpoint are initially equal in length. (I had to 
adjust these for the example!) 

Often graphic programs will have keyboard shortcuts that, if we move 
one such control endpoint, will force the “mated” one to move so that 
the straight line relationship is maintained. (I used that!) 

Cusps 

Suppose that at a joint between two segments, the two control point 
do not quite lie along a common line? In that case, the joint is to some 
extent “pointy”—it forms what a mathematician calls a cusp. 
Mathematically, it means that the second derivative of the function 
that describes the curve has a discontinuity at that point—that it, it 
changes suddenly. 

Corners 

Imagine the case where our overall curve is closed, and in fact turns 
out to be precisely a rectangle. How does that fit into this picture? 

Well, for one thing, the segments now are line segments, which turn 
out to be linear Bézier curves. In the usual situation, their control 
points lie along the two segments, not along a common line (as 
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required for a smooth joint). The result is often described as a corner. 
(In reality, the controls points probably lie at the anchor points, but the 
explanation is clearer if we consider them to lie along the segments—
that way we can cleanly say “they do not lie along the same line”.) 

We can see that a corner is just what we call a cusp when it is at the 
joint between to line segments. 

BÉZIER CHIROPRACTIC—JOINT MANIPULATION 

One of the common “tool functions” in program provisions for editing 
a Bezier spline deals with the matter of the joints. If we have a smooth 
joint, and hit it with a tool that is identified as “make a corner”, the 
two control points are drawn back to the joint itself—to the anchor 
point. The result is that there will be a cusp at that joint—we may 
consider it a corner. 

Conversely, if we have a joint with a cusp, and hit it with a tool that is 
identified as “make a symmetrical curve”, the result is that the two 
control points are “moved out” from the anchor point along a common 
line, satisfying the requirement for a smooth joint. 

Note that here is no unique “correct answer” as to exactly how far out 
the control points are put and exactly what will be the orientation of 
that common line. These parameters are chosen by an algorithm 
chosen by the program designer to give a “nice looking joint” over a 
range of situations. 

CIRCLES 

Can we make a perfect circle as a closed cubic Bézier spline? No, but 
we can make a very close approximation. The recipe is shown in 
figure 9. 

The figure is made of a closed spline comprising four cubic Bézier 
curves. We see all four endpoints (one common to each adjacent pairs 
of curves), and the interior control points for one curve. For each 
curve, the control vectors are tangent to the intended circle and 
should have a length of: 

 
r

3
124 

     (0.55228 . . . r) 

where r is the intended radius of the “circle”. 
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Figure 9. Cubic Bézier spline approximation of a circle 

It has been said that the departure from a perfect circle on a radial 
basis is less than one part in a thousand. 

Does that mean that the “circles” in technical illustration and CAD 
programs are imperfect? Not usually. The program generally has a 
special circle item that is defined in terms of radius and the location of 
the center, and is “perfect”—not as a closed Bézier spline. There are 
such specially-defined figures for other geometric shapes. 

But if we wish to change the shape of such a special figure, we may 
need to convert it to a cubic Bézier spline, which the program will 
generally do for us gladly (often the command is something like 
“convert to curves”). (The program may in fact just do that without 
our asking if we choose “modify as a Bézier curve” in the toolbox. 

PATHS AND STROKES 

Paths 

A Bézier curve has zero width, and thus cannot actually be “exhibited” 
(shown on a screen or printed page). This is of course equally true of a 
straight line segment (actually a special type of Bézier curve, eh?), or a 
geometric figure such as a rectangle or a circle. 

Of course, most graphic illustration programs do us the favor of 
displaying or printing a zero-width figure as a string of pixels of some 
arbitrary width (typically a fixed pixel width regardless of the scale at 
which the figure is viewed or printed) so we can see it. 
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In order to emphasize one aspect of such “zero-width, 
theoretically-invisible” figures, many illustration programs refer to 
them (including Bézier curves and Bézier splines) as paths. 

Stroke! 

Often we will want as a design element (perhaps a stripe across a 
control panel, the mouth of a smiley face, or a highly-visible line 
around the title block of an engineering drawing) a line or curve with a 
finite2 width. 

Many illustration programs describe this as making a stroke of finite 
width along a path (which could well be a Bézier curve). The word 
stroke is meant to be evocative of a stroke with a drafting pen. And 
the path can be thought of as the path along which the pen is moved. 

Other programs more pragmatically speak of having a line/curve of 
non-zero width. 

Often these programs allow various options regarding strokes (or 
stroked paths, as they are sometimes called by the truly fastidious), 
such as: 

• Having the end be 

o Straight across at the endpoint of the path 

o Straight across but beyond the endpoint of the path by half the 
width of the stroke 

o A semicircular curve with radius equal to half the stroke width 
and centered on the path endpoint  

• Where two or more curves join (not “smoothly”), having the joint 
take on one of several forms (often rather comparable to the 
variations for a stroke end, listed just above) 

• Having the stoke exhibit a pattern (such as “dotted” or “dashed’) 

• Having the stroke be of a certain color 

Note that none of these are aspects or properties of the Bézier curve 
itself. (And of course, the stroke itself is not a Bézier curve, but rather 
a stroke along a Bézier curve.) 

Figure 10 shows the path of the Bézier spline of figure 8 stroked. In 
the lower copy, the path itself, and its anchor points, have been 
overlaid in white for reference. In this case, the “round end” treatment 
was elected for the stroke. 

                                      

2 In the accepted sense (one of many) of “neither zero, infinitesimal, nor infinite”. 
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Figure 10. Stroked open Bézier spline 
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